

The Deltares Open Archive

Design

© Deltares, 2014, B

Title

The Deltares Open Archive

Client

Delft-FEWS product

management

Pages

1

The Deltares Open Archive

Keywords

Deltares Open Archive; Delft-FEWS archive; THREDDS; GeoNetwork

Summary

This Document describes the design of the Deltares Open Archive (FEWS-build 2014.01)

References

Place references here

Version Date Author Initials Review Initials Approval Initials

 Jan. 2014 Peter Gijsbers

 April 2014 Peter Gijsbers Grijze

State

draft

This is a draft report, intended for discussion purposes only. No part of this report may be

relied upon by either principals or third parties.

9 April 2014, draft

The Deltares Open Archive

i

Contents

1 Requirements analysis 1
1.1 Introduction 1
1.2 Use Cases 1

1.2.1 Reviews and inquiries on event handling by the water agency 1
1.2.2 Training material 2
1.2.3 Post-event performance analysis 2
1.2.4 Real-time diagnostic verification against historic events 2
1.2.5 Model Calibration 2
1.2.6 Model Verification 3
1.2.7 Other use cases 3
1.2.8 Summary of use case related data requirements 3

1.3 Other requirements 3
1.3.1 Metadata for discovery 3
1.3.2 Metadata generation 4
1.3.3 Reliable production of datasets 4
1.3.4 Open access 4
1.3.5 Archive data management 5
1.3.6 Preserving integrity of the archive data store and catalogue 5
1.3.7 Migration of existing archives 5
1.3.8 Availability and performance 5
1.3.9 Scalability 5
1.3.10 Security 5
1.3.11 Sustainable solution with low maintenance costs 6
1.3.12 Organisational ICT considerations 6

2 Overview of the Deltares Open Archive 7
2.1 What is the archive 7
2.2 The application that uses the archive 7
2.3 The data store: file/directory based 7
2.4 The Data sets: a collection of files in different formats 8
2.5 The metadata: key-word based 9
2.6 Events: a special case of metadata 10
2.7 Services to enable access 10
2.8 Data provision to archive 11
2.9 Archive data management 12
2.10 Archive management console 12
2.11 Data flow 13
2.12 Logical server components and its permissions 14

3 Datasets for archiving 15
3.1 Observations 15

3.1.1 Description of the Observations dataset 15
3.1.2 Time Series Metadata 15

3.2 Messages 18
3.2.1 Description of Messages dataset 18
3.2.2 Messages Metadata 18

3.3 External forecasts 19

ii

9 April 2014, draft

The Deltares Open Archive

3.3.1 Description of external forecasts dataset 19
3.3.2 Time Series Metadata 20

3.4 Simulations 20
3.4.1 Data set description 20
3.4.2 Simulations Metadata 22

3.5 Configuration 24
3.5.1 Description of Configuration dataset 24
3.5.2 Configuration metadata 24

3.6 Rating curves 25
3.6.1 Description of Rating Curves dataset 25
3.6.2 Rating Curves metadata 25

3.7 Snap shot 26
3.7.1 Description of Snap shot dataset 26
3.7.2 Snap shot metadata 26

3.8 Events: marking interesting datasets 27
3.8.1 Description of events 27
3.8.2 Event definition 28

4 Archive Processes 31
4.1 Data production with Delft-FEWS 31

4.1.1 The Delft-FEWS ExportArchiveModule 31
4.1.2 Observations archiving by Delft-FEWS 31
4.1.3 Messages archiving by Delft-FEWS 33
4.1.4 External forecast archiving by Delft-FEWS 34
4.1.5 Simulations archiving by Delft-FEWS 36
4.1.6 Delft-FEWS export of configuration 38
4.1.7 Delft-FEWS export of rating curves 39
4.1.8 Archiving Delft-FEWS snap shots 41

4.2 Archive Web-services 42
4.2.1 Catalogue server (GeoNetwork) 42
4.2.2 Data server (THREDDS) 43
4.2.3 Archive web-server 43

4.3 Archive Server processes: 44
4.3.1 FileSweeper 44
4.3.2 HistoricEventsExporter 45
4.3.3 Harvester 45
4.3.4 Archive Data Management Tool 47

4.4 Data usage processes 50
4.4.1 Discovery 50
4.4.2 Retrieval 51
4.4.3 Ingest in Delft-FEWS stand alone 51
4.4.4 Ingest of Historic events in Delft-FEWS (FSS) 52

5 Archive server configuration 55
5.1 Archive Content Configuration 55
5.2 Archive Server Configuration 55

6 Hardware 59
6.1 Archive server components 59
6.2 Example hardware specs 60

9 April 2014, draft

The Deltares Open Archive

iii

9 April 2014, draft

The Deltares Open Archive

1 of 1

1 Requirements analysis

1.1 Introduction

Many operational water agencies recognize the need for a water data archive. When being

asked what needs to be archive, the typical answer is 'everything'. This answer is driven by a

lack of deeper consideration what data is actually needed for what purpose, and how long a

dataset is actually relevant for that purpose and how they actually think they will find the data

when the archive has become terabytes in size. Storing 'everything' will also become very

expensive, in hardware, in labour to the data available on appropriate devices and in the

ability to find the data which is needed.

To design an appropriate data archive solution, a more detailed use case analysis is needed

which identifies:

• what specific uses exist for the archived datasets

• what portion of the operational dataset needs to be preserved for a specific use

• how long the dataset needs to be preserved for this use

• how people intend to search for the dataset they need

• what the data accessibility requirements are (e.g. in terms of standardized or proprietary

data formats)

• what the performance requirements are both in terms of discovery and retrieval speed

The end uses determine what datasets and metadata needs to be stored, thus having a major

impact on the solution chosen.

1.2 Use Cases

1.2.1 Reviews and inquiries on event handling by the water agency

As indicated, events require heightened attention or even action from the organisation. Given the

accountability of organisations for their actions, they may be faced with post-event reviews or even

formal inquiries by external parties. Such inquiry will extensively focus on the decisions and

actions taken (e.g. warnings issued, dam releases, flood defence actions or evacuation) with

emphasize on the timeline of information availability that guided the decision making. To support a

post-event inquiry or review, an archive thus should hold information that allows reconstruction of

such timeline. This includes both scientific data as well as non-scientific data such as forecast

products and records of communications. This is different from a need for exact reproducibility of

results or even storage of all data including intermediate calculation results.

The scientific data record should provide insight in the observations and numerical weather

predictions that were available at the moment the hydrological forecast was produced. This,

together with the model configuration used for the calculation, the initial model states, the manual

settings used by the forecasters and the final calculation results should enable forecast

reconstruction without the need to store all the intermediate model results. At least as important

for an inquiry, if not more important is the non-scientific data record. This should assist in the

reconstruction how the forecasters came to their final issued forecasts, what communication was

conducted when and to whom and how and when the decisions were made and communicated.

To conclude, an archive which is supposed to support a post-event inquiry or review should

hold from start to end all scientific (observations, available NWP forecasts, hydrological forecast

calculations and issued forecasts) and non-scientific data (forecast products, records of

The Deltares Open Archive

9 April 2014, draft

2 of 1

communications) to allow reconstruction of a timeline for decision making. Post-event addition of

the review findings to the archived dataset would make it more valuable for future use.

Organisations frequently have a legal requirement to keep such dataset for a legally

prescribed period of time. A review or inquiry is a process which may take a few days or weeks.

Completeness, readability and discoverability are the most important requirement, while it is

acceptable when the retrieval process takes some time. Devices may be chosen which fit those

needs.

1.2.2 Training material

Operational water agencies need to train their staff in the forecasting and warning process.

Preferably this is done with realistic training material. Records of interesting events may provide

suitable material, especially when the dataset has the extent as required for the review/inquiry

case. Training may be a reason to keep the dataset for a longer period than the legally required

term for review and inquiry. Given that training preparation normally does not require urgent data

access, similar requirements can be defined for completeness, readability and discoverability and

the duration of the retrieval process.

1.2.3 Post-event performance analysis

Hydrological forecasts performance assessment is another activity which operational

organisations may want to conduct to assess their current skill and understand where they can

improve their forecast capabilities. Such performance assessment only needs data for the variable

of interest (e.g. water levels or precipitation). To enable such task, the archive needs

observations, the final calculated forecasts and the issued forecasts as these can be used to

calculate performance indicators addressing peak accuracy, lead time or timing of threshold

crossing. Once the assessment is conducted, and the associated report is stored in the archive,

some of the datasets may become less relevant. Post-event analysis does not require urgent

access to these datasets.

1.2.4 Real-time diagnostic verification against historic events

Historic events provide diagnostic value to the forecaster to compare the current situation and

simulated forecast with observed situations from the past (Demargne, et al., 2010). Quick and

easy access in a matter of minutes, preferably by the forecasting system, is needed to allow

forecasters to use historic information during a calamity situation.

1.2.5 Model Calibration

Model development and calibration is a common activity conducted for water systems analysis as

well as forecasting. It requires a complete, quality controlled record of observations, both in terms

of forces (e.g. precipitation and temperature) and water conditions against which to compare the

model results (e.g. water levels, flows, wave heights, water quality indicators). Bad quality data in

the archive requires additional effort to make the dataset suitable for model calibration. Preferably

such quality control effort is conducted before the data is stored in the archive. Alternatively, the

archive should allow update of the dataset after quality control. Model calibration does not require

urgent access to these datasets. Open access to data, preferably using standard services and/or

data format, is important to enable usage by a wide range of calibration tools.

9 April 2014, draft

The Deltares Open Archive

3 of 1

1.2.6 Model Verification

Generally, a calibrated model is verified against a relevant portion of the dataset which has not

been used for model calibration. Model verification of a forecasting model is best done by

hindcasting and comparison against forecast forcing. Since these datasets can get voluminous,

data administrators may choose to store forecast forcing only for interesting events. Again, this

activity does not require urgent access to these datasets, while the forecasting system is the most

obvious tool using the data.

1.2.7 Other use cases

A variety of other water systems analysis use cases could be imagined, ranging from statistical

time series analysis for trends or extreme events to model development for water systems

analysis. Typically these use cases require open access to long and complete records of quality

controlled observations.

1.2.8 Summary of use case related data requirements

As can be seen in Table 1.1, various use cases require the same data while others only need a

portion. In general, a continuous record of observations is needed, while most other data types

only are needed for specific periods of interest. Data relevant to real time diagnostics for forecast

verification is the only dataset which requires high availability and fast access (i.e. within seconds).

All other use cases can cope with slower response times for discovery and retrieval as proper

planning of data retrieval from the archive can prevent delay of the work process.

Table 1.1 Relevance of different data types for different use cases

Use case

Data type

Event review/

inquiry

Training

materials

Event

analysis

(Skill)

Informative

event/

Diagnostic

Model

calibration

Model

verification

Observation x x x x x x

Simulation results

(water forecasts)

x x x

External forces

(NWP forecasts)

x x x

Initial model state x x

Model setup x x

Modelrun settings x x

Rating curves x x x

Forecast products x x

Communication

notes

x x

Post event

analysis reports

x x x

1.3 Other requirements

1.3.1 Metadata for discovery

The Deltares Open Archive

9 April 2014, draft

4 of 1

When the event is known by the person searching for data, keys used to discover the data are the

event name (if any), the start and end date (time) of the event and the area where the event

happened. When a general search for events will be conducted, the area of interest will be known,

while other search criteria may be needed such as threshold crossings or value crossings.

Searching by threshold crossing makes searching easier as less local knowledge is required at

the moment of searching. To enable searching by threshold crossings a metadata tagging

mechanism is required to highlight occurrence of certain conditions (precipitation, flow, water level

or prevailing wind conditions in direction and speed). This tagging could be done during data

storage or afterwards by a local expert, or by a tool that automatically can analyse data and add

the relevant metadata.

For those use cases that have no relation to events, search criteria are more focussed on

obtaining long time series for relevant locations and quantities. In some situations, searches may

be desired by related locations (e.g. upstream off) but this requires additional topological

knowledge.

Table 2 identifies the search criteria to support a use case, where M=mandatory, D= desirable,

O=optional and n.a. = not applicable.

Table 1.2 Search criteria to support a use case

Use case

Search criteria

Event review/

inquiry

Training Event

analysis

(Skill)

Informative

event/

Diagnostic

Model

calibration

Model

verification

By Date (start-end) M M M O M M

By Area M M M D D D

By Event label M M M M n.a. D

By Location D D M M M M

By Location relation n.a. n.a. n.a. n.a. O O

By Variable D D M M M M

By Threshold

crossing

D D M D O D

By Value crossing O O O O O O

1.3.2 Metadata generation

Preferably metadata is generated during storage. Some metadata can only be generated at a later

moment. Tagging an event with a name, start and end date, is generally a manual activity that has

to be conducted as a post-event activity. As indicated, data mining tools may be applied to enrich

the dataset with more metadata at a later stage, e.g. marking threshold crossings.

1.3.3 Reliable production of datasets

To support inquiries, comprehensive datasets need to be stored. The most reliable solution will

continuously store all relevant scientific and non-scientific data and its metadata for the most

extensive use case (inquiries/training) and remove unnecessary data as soon as is known that is

not needed (i.e. no event has happened). Such continuous storage process should be reliable,

having fall-back options that prevent data gaps when temporarily the data store cannot be

reached.

1.3.4 Open access

9 April 2014, draft

The Deltares Open Archive

5 of 1

Model calibration and water systems analysis are activities that may be conducted by a variety of

software tools. To increase the range of applications, data should be accessible through open

industry standards (e.g. OGC based services and/or data formats) as proprietary data formats

reduce the ability of researchers and developers. The archive should allow storage of data from

multiple sources. If proprietary formats are used, data conversion should be applied, either at

storage time to keep a consistent format in the archive, or at retrieval time to provide the data in a

standard format. Any time metadata requirements should be met to enable data discovery.

1.3.5 Archive data management

System administrators have different devices with different capabilities available to create an

archive infrastructure. Archive data management requires understanding the data volumes

involved and making decisions which datasets should be stored for what period of time on which

devices. A data storage strategy is crucial to keep the archive maintainable with good

performance. Event tagging for different use cases can be used to define such strategy.

Preferably, such strategy can be encapsulated in instructions for a data management tool that can

assist in data transfer (or removal) to the different devices.

1.3.6 Preserving integrity of the archive data store and catalogue

Data stored in an archive should not be lost. Preserving integrity of the data and the catalogue to

find the data are essential. Solutions should be considered that accommodate restoring datasets

and re-building of the associated catalogue.

1.3.7 Migration of existing archives

Water agencies often have existing hydrological archives. The data within these archives is

valuable and needs to be pre-served when implementing a new archive system. Various

strategies could be imagined, ranging from a mechanism to keep supporting the legacy system up

till transfer of datasets and metadata to the new archive. Transfer has an advantage that an

organisation can leave legacy technology behind.

1.3.8 Availability and performance

Service level requirements for infrastructure availability vary per use case. Archived data used

during real time forecasting operations requires nearly continuous accessibility of the dataset with

good performance. Most other use cases can cope with an archive which is unavailable for a few

hours or where more time is needed to find and retrieve dataset.

1.3.9 Scalability

Over the year, the archive will keep growing with new data sets that keep growing in volumes.

Scalability both for storage and the catalogue is crucial while keeping performance at an

acceptable level.

1.3.10 Security

Many data archives hold proprietary data which should be protected against misuse. Security

mechanism thus should be incorporated in the solution to control access to the data as well as

tagging of metadata (events).

The Deltares Open Archive

9 April 2014, draft

6 of 1

1.3.11 Sustainable solution with low maintenance costs

A data archive has to be a sustainable solution which can last for many years. Maintainability is

crucial as the archive may need to survive personal or organisational change, both in terms of

developers as system administrators. Complex solutions typically involve more components with

more interactions and thus more potential points of failure. Simple designs based on industry

standard technologies are easier to develop, maintain, administer and repair, thus increasing the

sustainability of the archive.

1.3.12 Organisational ICT considerations

Backend systems, such as a data archive, are often managed by specialized ICT departments

within a water agency. Typically, these departments have made organisation wide decisions for

the technology stack that they are willing to support. This includes preference for hardware

suppliers, operating systems and back end software such as RDBMS and application servers.

Ability to acquire maintenance services are an important consideration. Open source technology

only has an advantage if support can be acquired. OS platform independency is a valuable asset

at any time.

9 April 2014, draft

The Deltares Open Archive

7 of 1

2 Overview of the Deltares Open Archive

2.1 What is the archive

Figure 2.1 illustrates that an archive compromises a data store, a catalogue and an

application that accesses the archive. The application(s) can produce data for the archive and

consume data from the archive. The catalogue can be used to search the archive and find the

data that is needed. To improve portability and secure accessibility across hardware, services

are placed in-between the user application and the actual data store and catalogue.

Deltares Open Archive

Application

searchproduce consume

Data storage Catalogue

Service

Figure 2.1 Main components of an archive

2.2 The application that uses the archive

It is foreseen that a wide variety of application should be able to use the archive. Among the

applications foreseen are Deltares software packages such DeltaShell, Delft-FEWS, tools and

scripts, e.g. written in Python or Matlab as well as other customer specific applications.

2.3 The data store: file/directory based

The use cases have illustrated that an archive for operational water management should

extend beyond the storage of time series only. The archive should also be to store additional

documents (e.g. PDF, doc, txt, html, csv, images, video, model specific data including run

settings and model states) in relation to these time series. It is important to note however that

The Deltares Open Archive

9 April 2014, draft

8 of 1

this variation in data sets (file formats, data structures) does not mean that the data or

discovery process is unstructured. Generally, the dimensions of time, space, data source and

production method/moment provide sufficient structure to store and find the data.

As indicated the requirements ask for a scalable solution with limited complexity, ease of

maintenance and limited need for expensive (database) server hardware and software. In

addition, there is the desire to create a solution that can works both in a once only project

context (e.g. on a desktop) as well as in real time production environments on a server park

context.

Given these requirements and the structured nature of the data to store, a file based solution

is chosen, allowing easy expansion of storage space. Each data set gets its own directory

with an associated metadata file describing the content of the data stored in this directory.

Figure 2.2 illustrates that each directory holds a dataset of one or more files, as well as an

accompanying metadata file.

Deltares Open Archive

directory

Application

Metadata

Time series

Model data

Additional

documents

directory

Metadata

Time series

Model data

Additional

documents

directory

Metadata

Catalogue

directory

Metadata

Time series

Additional

documents

Figure 2.2 Overview of the file based Deltares Open Archive

Applications that use the data from the archive can access the files directly or obtain them

through a server.

2.4 The Data sets: a collection of files in different formats

The Deltares Open Archive is meant to support the water management organization in the

storage of data relevant for traceability in decision making in operational forecasting and

model studies. While traceability is important, reproduction of results may not always be a

requirement. The Deltares Open Archive is not intended become a versioning system for

model setup and schematization. However, model setups should be storable as they are

needed to make results traceability and understand their creation process.

9 April 2014, draft

The Deltares Open Archive

9 of 1

The data to be archived is organized by data sets. A data set comprises one or more files

holding interrelated content to be archived as a whole. Each data set is grouped in a directory

and can be described by one metadata file.

Table 2.1 provides an overview of the data sets that will be stored in the Deltares Open

Archive for operational forecasting purposes. In this context, data will be provided by Delft-

FEWS. However, other applications could provide data sets to be archived as well, as long as

the metadata requirements are met. More details are discussed in the chapter on data sets

for archiving.

Table 2.1 Data sets to be stored in the Deltares Open Archive

Data Set name Data types FEWS production process

Observations Historic Time series (nc) Continuous export, interval based

Messages Message (txt) Continuous export, interval based

External Forecast Forecast time series (nc) Continuous export, interval based

Simulation Run info (xml)

(Forecast) Time Series (nc)

FEWS Modifiers (PI-xml)

Web-reports (html/zip/pdf)

Model states (zip)

ThresholdCrossings Skill (csv)

Export with forecast run

Configuration FEWS Configuration (zip) Continuous check, Interval based

Incidental export when updated

Rating curve FEWS RatingCurve (PI-xml) Continuous check, Interval based

Incidental export when updated

Event attachments Reports (PDF/doc)

Other attachments (zip)

Manual export

As indicated in the previous sections, the data to be stored are generally time series, model

setup and documents. Each of them can come in a variety of file formats and data structures.

To achieve the desired ‘openness’ of the archive, some industry standards are chosen for the

file formats in which data is stored.

For time series, the netcdf file format (nc) has been chosen using the CF-convention. This

format is an international standard, fit for multi-dimensional data and supported by a wide

variety of software packages, tools, programming and scripting languages.

For documents, a variety of standard file formats is chosen, such as PDF, txt, xml, csv and

html. For model related data, the zip format has been chosen, as this container allows the

packaging of application specific content in a generic way.

2.5 The metadata: key-word based

The Deltares Open Archive

9 April 2014, draft

10 of 1

Archives become valuable when it is easy to discover the data stored. Generally, interesting

information is discovered by searching a catalogue which holds metadata, thus preventing the

need to access the actual dataset to answer the query. Given that a large portion of the data

to be archived is numeric, an important decision is whether the user should be able to query

the data for crossing of a specific number (e.g. Give the water levels in Rhine at Lobith where

the value is above 12m+MSL).

After discussion with end users, it became clear that users would like to search for threshold

crossings, but not necessarily for numbers. (E.g. Give me the water levels in Rhine at Lobith

where the value is above the flood watch level). Searching for data based on topological or

topographic knowledge was out of scope (e.g. the water levels for all stations in the Rhine

upstream of Lobith where the threshold ‘flood watch’ was crossed). Searching for any

locations in the Rhine where a threshold was crossed was considered used (e.g. the water

levels for all stations in the Rhine where the threshold ‘flood watch’ was crossed).

Given this scope and the associated decision to enable searching for threshold crossings

instead of crossings of actual numbers at a particular location, an important solution direction

is chosen: the catalogue should support searching by key word (e.g. threshold crossing ‘flood

watch’) instead of numbers without the need to incorporate detailed topological knowledge.

Within the Deltares Open Archive, the content of the catalogue is exactly the same as

metadata held in the metadata files that accompany the data set. A harvester process reads

the metadata files and populates the catalogue database (see section 4.3.3 for details).

2.6 Events: a special case of metadata

Data discovery strategies for scientific purposes typically start with an area and period of

interest, followed by more query details such as locations, variables and quality/status

indications. Many of the operational use cases have an additional item in common: they can

be related to an ‘event’, e.g. a storm, flood, drought or spill event. An event can be labelled by

a meaningful name, covers an area and a period of interest (e.g. Hurricane Sandy, NJ-NY

coast, 28 October – 31 October 2013).

Events can thus be used to discover relevant data in the archive. Events can also be related

to use cases, e.g. some events are appropriate for training purposes, others for model

calibration. So-called historic events are a specific type for Delft-FEWS as the associated

historic time series can be overlaid on top of the current time series.

The Deltares Open Archive acknowledges events as a special type of metadata overarching

multiple data sets. The area and period covered by the event determine, in combination with

the type of event and associated data types, which data sets belong to an event.

Since use cases differ in data needs, end-of-life and backup strategies, these items can be

related to events as well. A data set included as part of an event thus may have different

storage and device needs compared to data sets which are not part of an event.

Generally, the events metadata is created manually after the data sets have been stored in

the archive and after the (storm) event has passed away.

2.7 Services to enable access

The file based solution of the archive, both in terms of data sets and associated metadata,

allows applications to directly access data by disk. To answer queries to the archive, an

application could create its own internal representation of the ‘catalogue’ by scanning all

9 April 2014, draft

The Deltares Open Archive

11 of 1

metadata files on the file system. Once the data set is identified, the data could directly be

read from disk.

This solution is the least complex from the view point of processes to manage, but it will in

general not be acceptable from the perspective of the access restrictions as well as from the

perspective of performance. A more common approach will be using a catalogue server and a

data server or a combined server which encapsulated the two functions.

A catalogue server will have its own cache representation of the metadata files to improve

query performance. This cache is populated by a crawler process which scans the file system

and hands over the metadata to the catalogue.

The Deltares Open Archive supports the OpenGIS Catalogue Service

(http://www.opengeospatial.org/standards/specifications/catalog). The Deltares Open Archive

catalogue application is based on GeoNetwork open source (http://geonetwork-

opensource.org/).

The data server will directly work of the file system, providing an http-service to access the

data sets. The Deltares Open Archive data server is based on THREDDS

(https://www.unidata.ucar.edu/software/thredds/current/tds/). The THREDDS Data Server

(TDS) is a web server that can provide metadata and data access for scientific datasets,

using a variety of remote data access protocols. These include the protocols from OPeNDAP

(http://www.opendap.org), OGC Web Mapping Service

(http://www.opengeospatial.org/standards/wms) and OGC Web Coverage Service

(http://www.opengeospatial.org/standards/wcs). Non-scientific data sets such as documents

and zip files are supported by the TDS via the standard http-get protocols.

The default Deltares Open Archive setup thus will compromise a catalogue server where the

response is a server/file path and a data server to retrieve the files of the data set given the

search result.

In future, a combined server is foreseen which hands the application query to the catalogue

server, passes the result to the data server and returns the resulting dataset to the

application.

2.8 Data provision to archive

The THREDDS Data Server provides an access service to the data. It does not provide

additional support process to add or update new data to the archive, or conduct archive

management tasks. Other software processes are needed on the backend to conduct those

tasks. Most task can be scheduled on an interval. A command line call by a linux cron job or a

Windows Task Scheduling job has been chosen as a lightweight solution.

Given the requirement to enable restriction of write access to the data store, in combination

with a desired to minimize the need for dedicated monitoring of critical processes, a solution

has been chosen that reduces criticality of the backend process.

 Real time operational systems are allowed to directly write data sets (in batches) to

the data store. Permissions need to be setup such that the FEWS Forecasting Shell

Server (FSS) has direct write access to the data store. No additional process is

needed to ingest the data into the archive data store.

 Other applications may (eventually) be able to upload data to the archive via an HTTP

service (ArchiveWebServer). In the 2013.02 build, this feature is only implemented for

events and event-attachments

 A FileSweeper will clean up any issues related to file locking

http://www.opengeospatial.org/standards/specifications/catalog
http://geonetwork-opensource.org/
http://geonetwork-opensource.org/
http://www.opendap.org/
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wcs

The Deltares Open Archive

9 April 2014, draft

12 of 1

 A Harvester will crawl through all directories and scan the metadata files for any

updates. Metadata updates and converted into a native format for GeoNetwork and

ingested in the catalogue.

Failure of any backend maintenance process (FileSweeper, Harvester,

HistoricEventsExtractor) only results in an archive which is slightly out of date when this

approach is used.

An exchange directory has been considered to allow any application to provide data to the

archive. However, due to file and directory permission issues, an ArchiveWebServer has

been introduced.

The decision to allow direct writing of a high volume continuous data stream from the

operational system to the archive has been based on the need to minimize the risk of critical

system failure due to unavailability of the ArchiveWebServer.

2.9 Archive data management

Archives need to be managed to prevent costly overgrow. Archive data management

compromised activities such as backup of data sets to slower disks or tape, restoring of data

sets or complete removal of data sets. These data management activities need to be

harmonized with the procedures that are implemented to provide the data for archiving.

Within an operational context, it seems logical to continuously the archive with the latest data.

When nothing interesting has happened, datasets may quickly become irrelevant. To reduce

storage needs and costs, data may even be deleted from the archive. However, such cleanup

should be prevented for those situations where something interesting happened. These

situations are typically also the reasons why people want to search in the archive for data.

The Deltares Open Archive uses events for this purpose. Events are a way to cluster datasets

and mark them as being relevant. Events can be used to search the archive and discover

relevant data. Additionally, events may help in defining a strategy for data management of the

archive.

Within the Deltares Open Archive a manual solution is chosen where the System

Administrator is in control of data management. The solution uses the creation date of a

dataset (stored in the metadata) as well as instructions defined by data type. The instruction

defines per data type within a dataset what storage device to use given the age of the data

set. If a dataset is part of an event, the settings for this event type may overrule the dataset

default.

The System Administrator uses an ArchiveDataManagementTool to scan the archive and

create a file which lists the actions to be taken to clean up the archive.

2.10 Archive management console

The archive management console is not yet available. The console will become an

administrative web-interface, which provides:

• Insight in the last run/update of the archive maintenance processes (Harvester,

FileSweeper and HistoricEventsExporter,)

• Ability to kick off (once only) each archive server process individually

• Ability to run the ArchiveDataManagementTool

9 April 2014, draft

The Deltares Open Archive

13 of 1

2.11 Data flow

To summarize the flow of data and associated data processes as discussed a data flow

diagram has been created (Figure 2.3).

Deltares Open Archive Flow Chart

Archive

FEWS

Data server

(THREDDS)

Harvester

Database Server

(Catalogue)

GUI

FSS

File storage

Catalogue Server

(GeoNetwork)

DownloadDir

write

convertupdate

ArchiveWebS.

upload

search

post

read

FileSweeper

Archive

Management

Tool

Data sets

ImportDir

merge

import

Hist.

events

harvest

backup

extract

HistEventsExp.

put

get

Event.xml

Figure 2.3 Data flow between the various components of the archive

Data sets, including a metadata file can be provided to the Archive, are directly provided by a

FEWS FSS. In future, the ArchiveWebServer service can be expanded to accommodate

upload of full datasets.

For each dataset, only one version is stored. In case a dataset is updated, file locking may be

an issue. In that case, the new dataset receives a temporary file name. A daemon process

(the FileSweeper) scans the data store file system frequently for temporary file names and

replaces the old file with the new file once the lock removed.

With each new data set of data set update, metadata may change as well. A daemon process

(the Harvester) scans the data store file system frequently for metadata updates. Any

metadata file change is converted into the native import format for GeoNetwork to update the

catalogue.

Delft-FEWS uses ‘Historical Events’ to provide the forecaster diagnostic support using

experiences from the past. A daemon process (HistoricEventsExporter) scans the archive for

any recent updates (last x months) in the events definition and extracts all events as well as

the associated observations for the most recent events (last 10 days). This data is provided to

the Delft-FEWS application via the Import Directory of the FSS. Once imported in Delft-

FEWS, historical events automatically are available in the Operator Client.

The Deltares Open Archive

9 April 2014, draft

14 of 1

For any other user application, manual interaction is needed with the archive. Generally, the

application puts a request to the Catalogue server and receives a response. The response

holds the paths to the data sets as well as the metadata in the native Deltares Open Archive

format. Using this information, the user application calls the Data Server to obtain the

information. The data server provides the data to a Download directory. The user can use the

data directly from this Download directory, or move the data to a place where it can be used.

2.12 Logical server components and its permissions

In the end, the archive has five logical service component which require specific permissions

(see Table 2.2):

1 The Forecasting Shell Server, writing data to the archive file server.

2 The THREDDS Data service, hosted in Tomcat on the archive file server

3 The Catalogue service, hosted in Tomcat in a separate server

4 A Catalogue database instance, hosted in a database server

5 The Archive web server, typically hosted in Tomcat on the archive file server

– Events management

6 The archive server processes, hosted and executed on the archive file server

– Harvester (scheduled)

– FileSweeper (scheduled)

– HistoricEventsExporter (scheduled)

– DataManagementTool (manual executed)

Table 2.2 Permissions on the various folder of the archive

Folder

<root>=/data/archive/<application>/

read permission

by component

write permission

<root>/data THREDDS

DataManagementTool

Harvester

FileSweeper

HistoricEventsExporter

ArchiveWebServer

FSS

FileSweeper

<root>/events ArchiveWebServer ArchiveWebServer

<root>/eventsbackup ArchiveWebServer ArchiveWebServer

<root>/archiveConfig THREDDS system administrator

????/tofss/Import/historic_events FSS HistoricEventsExporter

9 April 2014, draft

The Deltares Open Archive

15 of 1

3 Datasets for archiving

This chapter describes the data sets which can be handled by the Deltares Open Archive.

The data sets are described from the perspective of the creation by the Delft-FEWS

operational system.

3.1 Observations

3.1.1 Description of the Observations dataset

An Observations dataset holds one data type: time series, stored in NetCDF files.

Observations are historical time series data, continuous over time, with a regular or irregular

time step. Typically these time series are scalar (0-dimensional in space). At each moment in

time only one numerical value applies per station and variable. For scalar time series, a

quality flag and string comment can be included for individual time stamps

This type of dataset consists of one or more NetCDF files and a ‘metaData.xml’. The NetCDF

files contain the observation timeseries and the ‘metaData.xml’ file contains meta-data about

the content of the NetCDF files.

Observation timeseries are stored in NetCDF (1.4) using the data structure and metadata

definitions as prescribed in the CF metadata convention (http://cf-pcmdi.llnl.gov/). Multiple

stations and variables can be included in one netcdf file.

3.1.2 Time Series Metadata

The metadata file for this data set follows the schema definition as defined in:

http://fews.wldelft.nl/schemas//version1.0/archive-schemas/netcdfMetaData.xsd.

See Figure 3.1 and Table 3.1 for the detailed explanation.

http://cf-pcmdi.llnl.gov/
http://fews.wldelft.nl/schemas/version1.0/archive-schemas/netcdfMetaData.xsd

The Deltares Open Archive

9 April 2014, draft

16 of 1

9 April 2014, draft

The Deltares Open Archive

17 of 1

Figure 3.1 Metadata describing the contents of a netcdf file

Table 3.1Metadata content of time series (Netcdf ComplexType)

Element Name Format Description

relativeFilePath string file path relative from metadata file

valuetype enum(1):

grid

scalar

Determines appropriate netcdf parser

timeSeriesType enum (1):

observed

simulated

externalForecast

Determines directory structure

areaId string area reference, Use no space, will become

part of directory path

The Deltares Open Archive

9 April 2014, draft

18 of 1

creationTime attributes date time Creation time of data set as posted to

archive

startTime attributes date time Start time of time series held in file

endTime attributes date time End time of time series held in file

header ContentHeader

ComplexType

header-parameterId string, use underscore

(_) no dot (.)

variable name in NetCDF header

header-locationId string, use underscore

(_) no dot (.)

station name in NetCDF header

header-ensembleId string ensemble/realization identifier

header-

ensembleMemberId

string ensemble/realization member identifier

statistics Statistics ComplexType

statistics-

thresholdCrossings

ThresholdsCrossings

ComplexType

thresholdCrossings-

header

StatisticsHeader

ComplexType

just one location, rest same as normal

ContentHeader

thresholdCrossings-

thesholdCrossing

ThresholdsCrossing

ComplexType

thesholdCrossing-

thresholdId

string identifier of threshold crossed

value double threshold value crossed

3.2 Messages

3.2.1 Description of Messages dataset

The Messages dataset holds one data type: text, stored in text files.

Typically, all text from the same origin (e.g. system logs, model logs or Forecaster Notes) are

collected together and stored in one file. Generally, each message in such file has a time

stamp associated with it. All messages are collated by day and stored by day. This type of

dataset consists of one or more text files and a metaData.xml file.

3.2.2 Messages Metadata

The metadata file for this data set follows the schema definition as defined in:

http://fews.wldelft.nl/schemas//version1.0/archive-schemas/messagesMetaData.xsd.

The dataset may hold multiple message files, where each file is described by its metadata

(see Figure 3.2 and Table 3.2).

http://fews.wldelft.nl/schemas/version1.0/archive-schemas/messagesMetaData.xsd

9 April 2014, draft

The Deltares Open Archive

19 of 1

Figure 3.2 Metadata for messages according to messagesMetaData.xsd

Table 3.2 Metadata content of messages

Element Name Format Description

relativeFilePath string file path relative from metadata file

type string as understood by software

areaId string area reference for which message applies

Use no space, will become part of directory path

creationTime attributes date time Creation time of dataset as posted to archive

startTime attributes date time Start time of messages held in file

endTime attributes date time End time of messages held in file

3.3 External forecasts

3.3.1 Description of external forecasts dataset

The external forecasts dataset holds one data type: time series, stored in NetCDF files.

External forecasts refer to forecast time series from external sources such as UK MetOfice,

KNMI, NCEP, ECMWF etc. Characteristic of a forecast time series is the fact that multiple

versions may exists at a particular point in time. Each version is identified by its reference or

forecast time, e.g. the 11am forecast. The time stamp when the value applies is typically

called valid time. Given that hydrological operational forecasting systems may use multiple

NWP products, which all share the same reference time, separate datasets need to be

archived by NWP source.

External Forecast timeseries are stored in NetCDF (1.4) using the data structure and

metadata definitions as prescribed in the CF metadata convention (http://cf-pcmdi.llnl.gov/).

For gridded timeseries, each file contains one grid and one or more variables. For scalar time

series, multiple stations and variables can be included in one netcdf file.

http://cf-pcmdi.llnl.gov/

The Deltares Open Archive

9 April 2014, draft

20 of 1

This type of dataset is accompanied with a metaData.xml file.

3.3.2 Time Series Metadata

The metadata file for this data set follows the schema definition as defined in:

http://fews.wldelft.nl/schemas//version1.0/archive-schemas/netcdfMetaData.xsd.

This is the same metadata definition as discussed for the observations (see Figure 2.1).

The content of the metadata file differs in the choice of timeSeriesType (externalForecast),

while the valueType will be ‘grid’ in most situations. Currently, no statistics can be stored in

the metadata for external forecasts.

3.4 Simulations

3.4.1 Data set description

General

The Simulations data set may hold a variety of data types, e.g.

 time series, stored in NetCDF files

 model states, stored in native model/application format

 run info in xml format

 model run settings stored in native application format (e.g. FEWS modifiers in PI-xml)

 reports stored in document formats (e.g. HTML, PDF)

Characteristic to this dataset is its origin: a simulation. This simulation could be a State

updating run or a Forecast run in a forecasting application (e.g. Delft-FEWS), or it could be a

reference or scenario run by any other simulator (e.g. a Python script or model application like

DeltaShell).

The dataset generally holds every data item which is needed for full traceability of the result.

This includes the time series as generated by simulation, possibly the time series that are the

boundary conditions for the simulation, the model state (if deviating from the default), model

run settings, including any deviations from the default, etc. If the dataset holds the ‘default’ or

reference, it may even include the entire model setup.

Timeseries are stored in NetCDF (1.4) using the data structure and metadata definitions as

prescribed in the CF metadata convention (http://cf-pcmdi.llnl.gov/). For gridded timeseries,

each file contains one grid and one or more variables. For scalar time series, multiple stations

and variables can be included in one netcdf file.

Model run settings are stored in native application format.

Reports are stored in HTML, ZIP or PDF format.

Delft-FEWS specific files in the simulations datasets

For Delft-FEWS the run settings are defined in the runinfo.xml file, which meets the schema

as defined in http://fews.wldelft.nl/schemas//version1.0/archive-schemas/runinfo.xsd.

As can be seen in Figure 3.3, this runinfo file includes information on the configuration version

used to create the results.

http://fews.wldelft.nl/schemas/version1.0/archive-schemas/netcdfMetaData.xsd
http://cf-pcmdi.llnl.gov/
http://fews.wldelft.nl/schemas/version1.0/archive-schemas/runinfo.xsd

9 April 2014, draft

The Deltares Open Archive

21 of 1

Figure 3.3 Delft-FEWS runinfo.xsd

Modifiers used in this run are stored in the modifiers.xml, which follows a FEW PI-schema:

http://fews.wldelft.nl/schemas/version1.0/pi-schemas/pi_modifiers.xsd. At the moment, only

location attribute modifiers can be stored (see Figure 3.4).

http://fews.wldelft.nl/schemas/version1.0/pi-schemas/pi_modifiers.xsd

The Deltares Open Archive

9 April 2014, draft

22 of 1

Figure 3.4 Delft-FEWS PI-schema modifiers.xsd

3.4.2 Simulations Metadata

The metadata file for this data set follows the schema definition as defined in:

http://fews.wldelft.nl/schemas//version1.0/archive-schemas/simulationMetaData.xsd.

As can be seen in Figure 3.5, the associated metadata file holds references to each individual

portion of the dataset

http://fews.wldelft.nl/schemas/version1.0/archive-schemas/simulationMetaData.xsd

9 April 2014, draft

The Deltares Open Archive

23 of 1

Figure 3.5 Metadata for simulation datasets according to simulationMetaData.xsd

The Deltares Open Archive

9 April 2014, draft

24 of 1

Table 3.3 Metadata content for simulation

Element Name Format Description

runInfo RunInfoFile

ComplexType

runInfo-

relativeFilePath

string path to runInfo file relative from metadata file

areaId string area reference, Use no space, will become part of

directory path

creationTime attributes date time Creation time of data set as posted to archive

timeSeriesType enum (1):

observed

simulated

externalForecast

Determines directory structure. Typically simulated

netcdf simulationNetCDF

ComplexType

subset of the normal netCDF ComplexType. For

details see section 3.1.2

modifiers AppliedModifiers

Complexype

modifiers-

relativeFilePath

string path(s) to modifier data file(s) relative from metadata

file

reports GeneratedReports

ComplexType

reports-

relativeFilePath

string path(s) to report zip file(s) relative from metadata file

states ModuleStates

ComplexType

states-

relativeFilePath

string path(s) to module state file(s) relative from metadata

file

3.5 Configuration

3.5.1 Description of Configuration dataset

The Configuration dataset is a zip file holding a Delft-FEWS configuration or complete model

setup. The Configuration is identified by a revision identifier. For Delft-FEWS, the revision

identifier is the Master Controller revision identifier. For non-FEWS configurations, any other

unique identifier could be used, e.g. an SVN-revision number.

The dataset is as accompanied by a metadata.xml

3.5.2 Configuration metadata

The metadata file for this data set follows the schema definition as defined in:

http://fews.wldelft.nl/schemas//version1.0/archive-schemas/configMetaData.xsd.

http://fews.wldelft.nl/schemas/version1.0/archive-schemas/configMetaData.xsd

9 April 2014, draft

The Deltares Open Archive

25 of 1

The dataset may hold one (or more) file, described by its metadata (see Figure 3.6 and Table

3.4). The metadata file is not complete yet as the URL is missing and multiple config files

should be allowed to accommodate multiple sub-models
1

Figure 3.6 Metadata for configurations according to configMetaData.xsd

Table 3.4 Metadata content for configuration

Element Name Format Description

relativeFilePath string path to configuration zip file relative from metadata file

revisionId string Identifier/version number

areaId string area reference for which message applies

Use no space, will become part of directory path

creationTime attributes date time Creation time of dataset as posted to archive

3.6 Rating curves

3.6.1 Description of Rating Curves dataset

The rating curves dataset holds a set of rating curve files accompanied by a metaData.xml

file. Any format can be chosen but Deltares software supports the Delft-FEWS

PI_ratingcurves.xsd schema definition using a rating table. For details check:

http://fews.wldelft.nl/schemas//version1.0/pi-schemas/pi_ratingcurves.xsd.

3.6.2 Rating Curves metadata

The metadata file for this data set follows the schema definition as defined in:

http://fews.wldelft.nl/schemas//version1.0/archive-schemas/ratingCurvesMetaData.xsd.

The dataset may hold multiple rating curve file, described by its metadata (see Figure 3.7 and

Table 3.5).

1 TODO: See FEWS-9909 and FEWS-9910

http://fews.wldelft.nl/schemas/version1.0/pi-schemas/pi_ratingcurves.xsd
http://fews.wldelft.nl/schemas/version1.0/archive-schemas/ratingCurvesMetaData.xsd

The Deltares Open Archive

9 April 2014, draft

26 of 1

Figure 3.7 Metadata for rating curves according to ratingCurvesMetaData.xsd

Table 3.5 Metadata content for rating curves

Element Name Format Description

relativeFilePath string file path relative from metadata file

areaId string area reference in which rating curves apply

Use no space, will become part of directory path

creationTime attributes date time Creation time of dataset as posted to archive

3.7 Snap shot

3.7.1 Description of Snap shot dataset

The snap shot dataset holds a complete snap shot of the model database with all its data.

Within Delft-FEWS this is equal to a local datastore as available on a Forecasting shell

Server. This dataset ensures that ALL information including its history, as held in the system

for a particular run, is archived. Snap shots are particular important when reviews or legal

inquiries are of concern to the operator. When snapshots are made at a high frequency,

duplication of data is likely to occur.

3.7.2 Snap shot metadata

To be implemented

Figure 3.8 Metadata for snapshots according to snapshotMetaData.xsd

Table 3.6 Metadata content for snapshot

Element Name Format Description

relativeFilePath string file path relative from metadata file

areaId string area reference in which rating curves apply

Use no space, will become part of directory path

creationTime attributes date time Creation time of dataset as posted to archive

9 April 2014, draft

The Deltares Open Archive

27 of 1

3.8 Events: marking interesting datasets

3.8.1 Description of events

Background

Within an operational context, it seems logical to continuously the archive with the latest data.

When nothing interesting has happened, datasets may quickly become irrelevant. To reduce

storage needs and costs, data may even be deleted from the archive. However, such cleanup

should be prevented for those situations where something interesting happened. These

situations are typically also the reasons why people want to search in the archive for data.

The Deltares Open Archive uses events for this purpose. Events are a way to cluster datasets

and mark them as being relevant. Events can be used to search the archive and discover

relevant data. Additionally, events may help in defining a strategy for data management of the

archive.

Events in the Deltares Open Archive context

Extreme situations having a major impact, such as storm events, typically receive a name.

Hurricane Sandy is well known to hit New York City, but not everybody remembers that this

happened end of 2012. Events thus could well be used to find data which is relevant.

Within the Deltares Open Archive, an event is considered a special kind of metadata which

can be characterized by:

• A name

• The area of interest

• The period of interest

• A description

An event may encapsulate multiple datasets of different kinds. E.g. in its full extend, the

archive of a storm event would include for the duration of the event: observations, external

forecasts, simulations, messages, the model/configuration used and the rating curves used.

To facilitate a training exercise, or an event review based on this event, all datasets are

needed. To conduct a forecast performance analysis, all datasets except the messages are

needed. For a calibration activity, observations might be sufficient. To verify the calibration

through a hindcast, both the observations and the external forecasts would be needed.

In other words, the actual usage determines which datasets are needed. The Deltares Open

Archive facilitates this by the introduction of an EventType, where each EventType defines

which kinds of datasets remain in the archive.

Within the Delft-FEWS context, a special event type is the Historical event. Historical events

refer to historical time series which can be added as an overlay to a graph with the current

time series.

Events creation

When the extreme situation is over and everything is back to normal, the moment has arrived

to conduct post-event activities such as checking gauges in the field or evaluating how the

event was handled. This is also the moment to mark a certain period of time in the archive as

an event. Datasets archived for this period will become part of the event.

The Deltares Open Archive

9 April 2014, draft

28 of 1

Marking datasets as being part of an event is generally a manual activity. The Delft-FEWS

user interface has a display which supports this activity. However, the event related

components of the Deltares Open Archive have been designed such way that other tools may

also be used.

Events dataset

Events may hold a specific dataset as well, namely attachments. These attachments can hold

the results of post-event analysis, such as reports or new data generated in the analysis.

3.8.2 Event definition

The events follow the schema definition as defined in:

http://fews.wldelft.nl/schemas//version1.0/archive-schemas/event.xsd.

Figure 3.9 and Table 3.7 discuss the event schema. The list of parameters and locations is

only relevant to hand over information to Delft-FEWs concerning the locations and

parameters that should be made available in a Historic Timeseries Overlay.

Table 3.7 Content of events.xsd

Element Name Format Description

id (attribute) string Unique events identifier, typically composed of

areaId_eventType_creationtime

name (attribute) string Event name (optional)

description string Description of event

creationDate attributes date time Creation date of event as posted to archive

startDate attributes date time Start date time of event

endDate attributes date time End date time of event

area attributes id name Identifier and name used for searching

parameters-

parameterId

string parameters to be included in Delft-FEWS Historic

Event overlay

locations-

locationId

string locations to be included in Delft-FEWS Historic

Event overlay

eventTypeId string identifier of event type

active boolean flag indicating status of event, default =TRUE

atachements-

attachment

string filename (recommendation: no spaces)

changed boolean indicates if file has changed compared to repository

when provided to archive import service

http://fews.wldelft.nl/schemas/version1.0/archive-schemas/event.xsd

9 April 2014, draft

The Deltares Open Archive

29 of 1

Figure 3.9 Events definition according to events.xsd

The eventTypes follows the schema definition as defined in:

http://fews.wldelft.nl/schemas//version1.0/archive-schemas/eventTypes.xsd.

Figure 3.10 and Table 3.8 Illustrate the content.

http://fews.wldelft.nl/schemas/version1.0/archive-schemas/eventTypes.xsd

The Deltares Open Archive

9 April 2014, draft

30 of 1

Figure 3.10 EventTypes definition according to eventTypes.xsd

Table 3.8 Content of eventTypes.xsd

Element Name Format Description

id string Unique events identifier

name string Event name

dataType string (Enumeration):

external forecast timeseries

forecaster notes

model states

modifiers

observed time series

rating curves

reports

simulated timeseries

data types included in this event

historicalEvent bool Flag indicates if event should be handled

as Delft-FEWS Historic event

9 April 2014, draft

The Deltares Open Archive

31 of 1

4 Archive Processes

4.1 Data production with Delft-FEWS

4.1.1 The Delft-FEWS ExportArchiveModule

Within Delft-FEWS, the datasets are exported to the archive in a workflow using the

ExportArchiveModule. This workflow needs to be scheduled on a regular interval to archive all

relevant data. To prevent dependencies on other processes, the ExportArchiveModule is

envisioned to write directly into the archive file storage. The FSS thus needs to be able to

have write access to those disks.

For each kind of dataset, the ExportArchiveModule checks the database for changes over a

(configured) relative period. It exports any data which meets the export instructions and has

changed within this period. Datasets are archived in a pre-defined directory structure, which is

based on areaId, date and dataset.

The schema of the associated configuration file (Figure 4.1) is defined at:

http://fews.wldelft.nl/schemas/version1.0/exportArchiveModule.xsd.

Figure 4.1 Top level of Delft-FEWS exportArchiveModule.xsd

4.1.2 Observations archiving by Delft-FEWS

For observations a dataset is generated for every area on a daily basis. The associated

directory structure of the Delft-FEWS export for this type of dataset is as follows:

<archive root>/<yyyy>/<MM>/<areaId>/<dd>/observed/

http://fews.wldelft.nl/schemas/version1.0/exportArchiveModule.xsd

The Deltares Open Archive

9 April 2014, draft

32 of 1

When Delft-FEWS generates the netcdf file, data is written to the same data block when the

entire matrix is filled, i.e. all time steps are regular and none of the values is missing. For

those locations with irregular time stamps, or missing values, a separate data block is used.

Within the netCDF file, each data block is accompanied by a header. Within each header a

metadata item called ‘timeseries_sets_xml’ is included, holding the exact definition of the

timeSeriesSet as the data was stored in the FEWS database. This feature allows full

reproducibility of the time series via an Import workflow in a Delft-FEWS stand alone

application, assuming that the associated Delft-FEWS configuration is in place.

The exportArchiveModule.xsd has a dedicated exportObserved section to configure the

observed timeseries that need to be archived (see Figure 4.2). Table 4.1 documents the

associated elements:

Table 4.1 Deft-FEWS export configuration for archiving observations

Element Forma

t

Description

general ComplexType

archiveFolder string Export destination folder, assumes that the account

running the FEWS (FSS) application has write

access

relativePeriod Exports entire dataset by day, for any day where a

database change (blob creation time) is detected

within the relativePeriod (relative to T0).

Existing timeseries files are overwritten*

idMap string idMap applied to translate internal FEWS identifiers

to identifiers that meet NetCDF-CF criteria.E.g.

netcdf does not allow a full stop (‘.’) in the variable

name

netcdfObservedExport

Activities ComplexType

fileName string without nc extension, preferably no spaces

areaId string area to which the dataset belongs

ncMetaData string

elem.

optional metadata tags within NetCDF file following

CF convention. Supported by the internal catalogue

of the THREDDS Data Server

includeFlags bool default=TRUE; if TRUE, a list of flags is stored,

each value pointing to the associated flag

includeComments bool default=TRUE; if TRUE, a list of comments is

stored, each value pointing to the associated

comment

thresholdGroupId string identifies FEWS ThresholdGroup which is used to

detect threshold crossings to be highlighted in the

metaData.xml

timeSeriesSets FEWS timeseries sets

9 April 2014, draft

The Deltares Open Archive

33 of 1

* When an existing file is locked while it needs to be overwritten, the export function

writes a new temporary file. The FileSweeper, a scheduled process, renames this file when

the lock is removed from the original file.

Figure 4.2 Deft-FEWS export configuration for archiving observations

4.1.3 Messages archiving by Delft-FEWS

Delft-FEWS can export messages to the archive via the ArchiveExportModule

(exportMessages activity).

For messages a dataset is generated for every area on a daily basis. The associated

directory structure of the Delft-FEWS export for this type of dataset is as follows
2
:

<archiveRoot>/<yyyy>/<MM>/<areaId>/<dd>/messages/

The exportArchiveModule.xsd has a dedicated exportMessages section to configure the

messages that need to be archived (see Figure 4.3). Currently only ForecasterNotes can be

archived. Table 4.2 documents the associated elements:

Table 4.2 Delft-FEWS export configuration for archiving messages

Element Format Description

general ComplexType

2
 TO DO: FEWS-10198: update directory structure to above setup

The Deltares Open Archive

9 April 2014, draft

34 of 1

archiveFolder string Export destination folder, assumes that the

account running the FEWS (FSS) application has

write access

relativePeriod Exports entire dataset by day, for any day where

a database change (blob creation time) is

detected within the relativePeriod (relative to T0).

Existing files are overwritten*

MessagesActivities

ComplexType

forecasterNotesExport

Activity ComplexType*

areaId string area for which messages need to be archived

* When an existing file is locked while it needs to be overwritten, the export function

writes a new temporary file. The FileSweeper, a scheduled process, renames this file when

the lock is removed from the original file.

Figure 4.3 Delft-FEWS export configuration for archiving messages

4.1.4 External forecast archiving by Delft-FEWS

Delft-FEWS can export external forecast time series to the archive via the

ArchiveExportModule (exportExternalForecast activity).

For external forecasts a dataset is generated for every area for every source for every

forecast. The associated directory structure of the Delft-FEWS export for this type of dataset

is as follows:

<archiveRoot>/<yyyy>/<MM>/<areaId>/<dd>

/external_forecasts/<sourceId>_<ExtForecastTime>

The exportArchiveModule.xsd has a dedicated exportExternalForecast section to configure

the time series that need to be archived (see Figure 4.4). Table 4.3 documents the associated

elements:

9 April 2014, draft

The Deltares Open Archive

35 of 1

Figure 4.4 Delft-FEWS export configuration for archiving external forecasts

Table 4.3 Delft-FEWS export configuration for archiving external forecasts

Element Format Description

GeneralExportForecast

Section ComplexType

archiveFolder string Export destination folder, assumes that the

account running the FEWS (FSS) application

has write access

relativePeriod Exports entire external forecast dataset by

source and forecast time, for any forecast

where a database change (blob creation time)

is detected within the relativePeriod (relative to

T0). Existing timeseries files are overwritten*

If no relativePeriod is specified the external

forecast with the latest forecast time is exported

idMap string idMap applied to translate internal FEWS

identifiers to identifiers that meet NetCDF-CF

criteria.E.g. netcdf does not allow a full stop (‘.’)

in the variable name

ExternalForecastActivities

ComplexType

NetcdfExternalForecast

ExportActivities

ComplexType

NetcdfExternalForecast

ExportActivity

ComplexType*

fileName string without nc extension, preferably no spaces

areaId string area to which the dataset belongs

sourceId identifies underlying source e.g. NWP product

ncMetaData string

elem.

optional metadata tags within NetCDF file

following CF convention. Supported by the

internal catalogue of the THREDDS Data

The Deltares Open Archive

9 April 2014, draft

36 of 1

Server

includeFlags bool only applied for scalar values.

default=TRUE; if TRUE, a list of flags is stored,

with each value pointing to the associated flag

includeComments bool only applied for scalar values.

default=TRUE; if TRUE, a list of comments is

stored, with each value pointing to the

associated comment

timeSeriesSets FEWS timeseries sets

* When an existing file is locked while it needs to be overwritten, the export function

writes a new temporary file. The FileSweeper, a scheduled process, renames this file when

the lock is removed from the original file.

4.1.5 Simulations archiving by Delft-FEWS

Delft-FEWS can export simulations to the archive via the ArchiveExportModule

(exportSimulations activity). Typically this archiving activity is included in the workflow that

computes the final approved forecast.

The associated root directory structure of the Delft-FEWS export for this type of dataset is as

follows:

<archiveRoot>/<yyyy>/<MM>/<areaId>/<dd>/simulated/<workflowId>_<TimeZ

ero>_<DispatchTime>

Where <dd> refers to the date of the forecast time T0.

This directory holds the metaData.xml as well as runInfo.xml file with the FEWS taskrun

properties (see Figure 3.3). Within this directory the following sub-folders may exist:

/timeseries

/reports

/modifiers

/states

The exportArchiveModule.xsd has a dedicated exportSimulated section to configure the

messages that need to be archived (see Figure 4.5). The associated specification is given in

Table 4.4.

Table 4.4 Delft-FEWS export configuration for archiving simulations

Element Format Description

GeneralExportForecast

Section ComplexType

archiveFolder string Export destination folder, assumes that the

account running the FEWS (FSS) application has

write access

relativePeriod Exports entire simulated timeseries by workflow,

for any simulated forecast where database

change (blob creation time) are detected within

the relativePeriod (relative to T0). Existing

9 April 2014, draft

The Deltares Open Archive

37 of 1

timeseries files are overwritten*

If no relativePeriod is specified the Current

simulated forecast is exported

idMap string idMap applied to translate internal FEWS

identifiers to identifiers that meet NetCDF-CF

criteria.E.g. netcdf does not allow a full stop (‘.’) in

the variable name

ForecastActivities

ComplexType

NetcdfForecastExport

Activities ComplexType

NetcdfForecastExport

Activity ComplexType*

fileName string without nc extension, preferably no spaces

areaId string area to which the dataset belongs

ncMetaData string

elem.

optional metadata tags within NetCDF file

following CF convention. Supported by the

internal catalogue of the THREDDS Data Server

includeFlags bool only applied for scalar values.

default=TRUE; if TRUE, a list of flags is stored,

with each value pointing to the associated flag

includeComments bool only applied for scalar values.

default=TRUE; if TRUE, a list of comments is

stored, with each value pointing to the associated

comment

timeSeriesSets FEWS timeseries sets

ReportsExportActivity

ComplexType*

subfolder string Subdirectory within the ‘reports’ directory

moduleInstanceId string moduleInstanceId which created the report

ModuleStatesExport

Activity ComplexType*

moduleInstanceId string moduleInstanceId which created the state

* When an existing file is locked while it needs to be overwritten, the export function

writes a new temporary file. The FileSweeper, a scheduled process, renames this file when

the lock is removed from the original file.

The Deltares Open Archive

9 April 2014, draft

38 of 1

Figure 4.5 Delft-FEWS export configuration for archiving simulations

4.1.6 Delft-FEWS export of configuration

Delft-FEWS can export the current configuration to the archive via the ArchiveExportModule

(exportConfig activity). The configuration thus is exported as part of the workflow. The

associated root directory structure of the Delft-FEWS export for this type of dataset is as

follows:

<archiveRoot>/<config>//<areaId>/<yyyymmdd>/

The date refers to the revision date of the configuration. The file name typically holds the

revisionId.

The exportArchiveModule.xsd has a dedicated exportConfig section to setup the export of the

Configuration (see Figure 4.6). This is due to be revised as the same relativePeriod based

export mechanism should be adopted for checking what to export (see Table 4.5).

9 April 2014, draft

The Deltares Open Archive

39 of 1

Figure 4.6 Delft-FEWS export configuration for archiving configurations

Table 4.5 Delft-FEWS export configuration for archiving a configuration

Element Format Description

GeneralExportConfig

ComplexType

archiveFolder string Export destination folder, assumes that the

account running the FEWS (FSS) application has

write access

relativePeriod (TO DO) Exports entire configuration when database

change (config revision) has been detected within

the relativePeriod (relative to T0). Existing files

are overwritten*

If no relativePeriod is specified the Current

configuration is exported

ExportConfigActivities

ComplexType

ExportConfigActivity

ComplexType*

areaId string area to which the dataset belongs

4.1.7 Delft-FEWS export of rating curves

Delft-FEWS can export rating curves to the archive via the ArchiveExportModule

(exportRatingCurves activity). The entire history of the rating curves is exported. The

associated root directory structure of the Delft-FEWS export for this type of dataset is as

follows
3
:

<archiveRoot>/ratingcurves/<areaId>

The configurator can choose between exporting the full set or just the rating curves that have

changed, with or without modifier changes.

The exportArchiveModule.xsd has a dedicated exportRatingCurve section to setup the export

of the Configuration. Table 4.6 and Figure 4.7 discuss the general section.

3 FEWS-10198: update directory structure to above setup

The Deltares Open Archive

9 April 2014, draft

40 of 1

Table 4.6 Delft-FEWS export configuration for archiving rating curves (general section)

Element Format Description

GeneralExportRating

Curves ComplexType

archiveFolder string Export destination folder, assumes that the

account running the FEWS (FSS) application has

write access

relativePeriod If defined, only rating curves which have database

changes during the relativePeriod (relative to T0)

are exported. If no relativePeriod is specified all

available rating curves are exported

Prefix-

timeZeroFormattingString

string Adds T0 stamp as prefix to file name

E.g.yyyymmdd_hhmm

idMap string idMap applied to translate internal FEWS

identifiers to external identifiers

unitConversionsId string Allows conversion of rating table units

includeModifiers bool Default=FALSE; If TRUE, rating curve modifiers

should be included in the export

Figure 4.7 Delft-FEWS export configuration for archiving rating curves, general section

9 April 2014, draft

The Deltares Open Archive

41 of 1

Table 4.7and Figure 4.8 discuss the activities section of for exporting rating curves.

Table 4.7 Delft-FEWS export configuration for archiving rating curves (activities section)

Element Forma

t

Description

RatingCurvesActivities

ComplexType

RatingCurvesExport

Activity ComplexType

fileName string without nc extension, preferably no spaces

areaId string area to which the dataset belongs

linearTableStageresolution string Stage increment between the rows in a rating

table

locationId/locationSetId string Locations for which rating curves should be

exported to this file

Figure 4.8 Delft-FEWS export configuration for archiving rating curves, activities section

4.1.8 Archiving Delft-FEWS snap shots

The Deltares Open Archive

9 April 2014, draft

42 of 1

Snap shots of the Delft-FEWS database can be archived via the archiveExportModule

(exportSnapShot activity).

For snapshots a dataset is generated and stored under the configured area at the memoment

of workflow execution. The associated directory structure of the Delft-FEWS export for this

type of dataset is as follows:

<archiveRoot>/<yyyy>/<MM>/<areaId/<snapshot>/

Figure 4.9 and Table 4.8 documents the associated elements in the exportSnapShot activity:

Table 4.8 Delft-FEWS export configuration for archiving database snap shots

Element Format Description

general ComplexType

archiveFolder string Export destination folder, assumes that the

account running the FEWS (FSS) application has

write access

ExportSnapShotActivity

ComplexType

areaId string area (folder) where snapshot is archived

Figure 4.9 Delft-FEWS export configuration for archiving database snap shots

4.2 Archive Web-services

4.2.1 Catalogue server (GeoNetwork)

The Catalogue server will host the metadata of the datasets. This server can be queried using

keywords contained in the metadata. Each metadata item holds tags for the areaId and the

period. In future, an additional key-value pair constructs will be added to allow additional

freedom for tagging data by allowing your own keys (e.g. winddirection).

The catalogue itself will be based on the jave based open source software package

GeoNetworks, a package which provides catalogue services using the OGC-Catalogue

Service (CSW) standard. The Deltares Open Archive will deploy GeoNetwork on a Tomcat

webserver.

Since CSW requires geospatial query capabilities, a database cache will be needed which

can accommodate geospatial indices. The database will normally be PostGress database,

with PostGIS for spatial indexing. Other RDBMS (e.g. Oracle, Microsoft SQL Server could be

utilized if required by the IT-department, but license cost may make testing and applying the

spatial component expensive.

9 April 2014, draft

The Deltares Open Archive

43 of 1

The GeoNetwork catalogue requires its meta-data to be in one or more predefined formats.

The format chosen for cataloguing datasets is the ISO19139 meta-data template. All required

search criteria are included in an XML document that conforms to this schema standard.

Besides the required information it would be helpful to also add additional information

describing in more detail the contents and source of the datasets.

How are events connected to datasets

The metadata of the datasets do not hold references to events. Instead, the area and period

defined in the event are used to identify datasets that meet those criteria.

Events are not included in the GeoNetwork catalogue. Instead the archive server holds its

own (file based) catalogue for events. A webserver hosts these files for use by other

applications.

4.2.2 Data server (THREDDS)

Datasets will be hosted via the THREDDS Data Server. Client software can use the URLs as

held in the metadata to request the actual data from the THREDDS Data Server.

So-called scientific data, i.e. the netCDF files, can be accessed via protocols such as

OPeNDAP, OGC-WMS and OGC-WCS. The THREDDS data server is also used to host

'non-scientific data' (e.g. all other file formats) via standard http-protocols.

URL: http://threddstomcatserver:8080/thredds/fileServer/Archive/

4.2.3 Archive web-server

Event files are hosted on the data file server. An archive process manages the event files. It

can add, update, merge and delete events with the existing repository of event files.

This archive process is running as a web service: the archive web service, deployed in the

same Tomcat server as THREDDS. THREDDS is used to download events, while the archive

web service offers HTTP Put methods to upload of event files and event attachments.

The creation and update of events is a manual process conducted outside the archive. The

Delft-FEWS application provides a GUI for this purpose (see Figure 4.10). Since the archive

web server holds the logic and data to manage events, other tools including web-clients could

be implemented to create and update events.

The update process basically comes down to the following steps:

1 Request a download from the server to copy existing event files from the server

repository to a local work directory

2 Add and update events in the local work directory. Removal of events is done by setting

the active flag to inactive.

3 Upload the updated event files to the archive server. The server merges the changes

with its repository.

URL: http://threddstomcatserver:8080/thredds/fileServer/Archive/

https://marinemetadata.org/references/iso19139
http://threddstomcatserver:8080/thredds/fileServer/Archive/

The Deltares Open Archive

9 April 2014, draft

44 of 1

Figure 4.10 Delft-FEWS GUI to create and update events

Adding attachments to events

Events provide a special case as post-event analysis may result in reports or data which

needs to be tagged to the event. The Deltares Open Archive facilitates this need by allowing

events to hold attachments. Attachments can have any file format but the PDF format is

recommended for reports and the zip format for other files.

Attachments are archived in sub-directories of the events directory. The sub-directories are

named after the eventId.

URL: http://threddstomcatserver:8080/thredds/fileServer/Archive/

Note:

The ArchiveWebServer is foreseen to grow in capabilities as it will also become the host for

the Admin webconsole.

4.3 Archive Server processes:

4.3.1 FileSweeper

When a process is overwriting an existing file in the archive, another process might have

locked the file for reading. In that case, the file writer saves the file under a temporary name.

The task of the FileSweeper is to scan the archive for temporary files and rename them to the

original filename, hereby overwriting the original file.

9 April 2014, draft

The Deltares Open Archive

45 of 1

The procedure is as follows (implemented for time series files):

1 The data producer (e.g.Forecasting Shell) writes the files as *.tmp, rename the file to

*.new and tries to rename this file to *.nc

2 The FileSweeper scans all directories for files named *.new and tries to rename them to

*.nc

The FileSweeper is run on a schedule via the archive admin console.

4.3.2 HistoricEventsExporter

This process identifies which events are FEWS Historic events. The process moves

Observation timeseries in the event period from the archive to the HistoricalEvents import

directory of the FSS.

To do so, the process scans the Events directory for any files updated in the last X days. If

these events reflect a historic event, both the event file as well as the associated (observed)

time series file is posted to the FSS import directory.

The historicEventsExporter is run on a schedule via the archive admin console.

4.3.3 Harvester

This process scans the data directory and identifies new or updated metadata files based on

file time stamps. Since the native metadata format of the Deltares Open Archive, as

presented in chapter 3 does not meet the ISO19139 standard, the harvester transfers the

native metadata.xml file into the ISO19139 meta-data files for insertion into catalogue using

the GeoNetwork webservices :An example of such xml file is given in Figure 4.11.

The Deltares Open Archive

9 April 2014, draft

46 of 1

Figure 4.11 Metadata record (ISO 19139 standard) as stored in catalogue database

The Deltares metadata files are stored in the Archive file storage in the directory holding the

dataset. When the harvester finds a new dataset, it reads the metadata.xml and offers the

metadata to the GeoNetwork webservice. GeoNetwork adds a new metadata record to the

catalogue and hands back a unique recordId to the harvester. The harvester places this

recordId in a file next to the metadata.xml file (see Figure 4.12).

9 April 2014, draft

The Deltares Open Archive

47 of 1

cat1

cdb1

harvester

NetcdfXml (metadata)recordId

insert

recordId

recordId

Figure 4.12 Metadata harvesting process

This recordId allows the harvester to update any metadata associated to the dataset. This

can include changes of directory locations as long as file dates have changed.

By storing the identifier together with the data it will always be possible to find and alter the

corresponding meta-data entry in GeoNetwork or add additional data to the dataset.

The harvester will provide to GeoNetwork:

• URL to the Deltares metadata file

• Relative paths to the files or datatypes in the dataset

• The metadata tags as held in the Deltares metadata file

If the harvester detects a directory with a recordId but without a metadata file, it will remove

the record from the catalogue and remove the recordId file from the file system.

The Harvester is run on a schedule via the archive admin console. When the harvester

experiences insertion issues due to an overload of the catalogue webservice, it goes into

sleep mode for 30 minutes.

4.3.4 Archive Data Management Tool

As part of each dataset, the metadata.xml file holds a creation date/time stamp. In

combination for a lifetime that can be associated to each data set and event type, an

overview can be generated what data needs to be moved.

The Deltares Open Archive

9 April 2014, draft

48 of 1

The archive data management tool generates this overview in a comma separated report by

analyzing the archive file system and using a set of life time rules. The System Administrator

can use this report to move the data around.

The tool uses two configuration files.

• The eventTypes.xml file as discussed in section 3.8.2 and Figure 3.10

• The dataManagement.xml configuration file which defines the life times of data types

and overruling lifetimes by event type (see Figure 4.13).

The configuration file defines a default lifetime for any piece of data, which can be overruled

by data set. EventRules define the lifetime of data associated with a particular event type. If a

dataset is part of such event, the lifetime of the event overrules the lifetime of the dataset.

Figure 4.13 Configuration of lifetimes by data type and event type (dataManagementTool.xsd)

9 April 2014, draft

The Deltares Open Archive

49 of 1

Table 4.9 dataManagementTool configuration

Element Format Description

outputFile string Full path including file name for the

comma separated report file

generated by the data management

tool

eventsFolder string Full path referencing the root folder

where events are stored

basePath string Full path to the root of the data

archive

defaultLifeTime CalendarTimeSpan

complexType

default life time for any dataset

CalendarTimeSpan

ComplexType

unit (enum),

multipler, divider

enumeration: minute, day, week,

month, year

defaultAction string default string as put in the report

when life time is passed

lifeTimeSimulatedDataSets CalendarTimeSpan

complexType

lifetime for datasets of type

simulated, overrules default life time

lifeTimeObservedDataSets CalendarTimeSpan

complexType

lifetime for datasets of type

observed, overrules default life time

lifeTimeExternalForecastD

ataSets

CalendarTimeSpan

complexType

lifetime for datasets of type external

forecasts, overrules default life time

lifeTimeMessagesDataSets CalendarTimeSpan

complexType

lifetime for datasets of type

messages, overrules default life time

lifeTimeConfgurationDataS

ets

CalendarTimeSpan

complexType

lifetime for datasets of type

configuration, overrules default life

time

lifeTimeRatingCurvesData

Sets

CalendarTimeSpan

complexType

lifetime for datasets of type rating

curves, overrules default life time

lifeTimeSnapShotDataSets CalendarTimeSpan

complexType

lifetime for datasets of type snap

shot, overrules default life time

eventRule eventRule

ComplexType

defines lifetime for events and

associated datasets. Defined be

event type. Overrules life time of

dataset

eventTypeId string identifier of event type

lifeTime CalendarTimeSpan

complexType

lifetime for events and associated

datasets of this event type, overrules

dataset life time

The datamanagement tool is executed manually from the command line. E.g.

The Deltares Open Archive

9 April 2014, draft

50 of 1

/opt/fews/archive/managementtools/datamanagementtool.sh

/opt/fews/archive/managementtools/archiveDataManagement.xml

/opt/fews/archive/managementtools/bin >/dev/null

4.4 Data usage processes

4.4.1 Discovery

Data can be discovered by area, period and data type:

• Via the GeoNetwork catalogue

• by browsing the THREDDS data server

• via the FEWS GUI (see Figure 4.14)

Figure 4.14 Delft FEWS GUI to identify and download available data by data type, area and period.

Currently, the FEWS GUI does not offer the ability to search for datastore snapshots. These

need to be retrieved by browsing.

The URL to connect to GeoNetwork is (assuming port 8080 for Tomcat):

http://geonetworktomcatserver:8080/geonetwork10.2/srv/eng/csw/main.home

Data can be discovered by event (area, name and /or period) via the FEWS GUI (see Figure

4.15).

9 April 2014, draft

The Deltares Open Archive

51 of 1

Figure 4.15 Delft FEWS GUI to identify and download available data by event

4.4.2 Retrieval

Datasets can be retrieved from the THREDDS data server. This is a file download only unless

the scientific protocols for OPeNDAP or WMS are configured in THREDDS.

The Delft FEWS GUI can directly download the data by dataset or by event. Data is

downloaded to a local folder.

4.4.3 Ingest in Delft-FEWS stand alone

Once downloaded, the data can be ingested by a Delft-FEWS stand alone with the aim to

bring the local datastore back in the 'original state', i.e. with a similar time series set definition

as used when Delft-FEWS ran the workflow to produce the data. This exact timeseries

definition is included in the netcdf files during the archive export process. The

importArchiveModule has been implemented to uses this definition included in the netcdf files

to put the data back in Delft-FEWS local datastore

Figure 4.16 and Table 4.10 describe the configuration details for the import module.

The Deltares Open Archive

9 April 2014, draft

52 of 1

Figure 4.16 Configuration of archive Import (importArchiveModule.xsd)

Table 4.10 importArchiveModule configuration

Element Format Description

importSimulated/importFolder string (path) Full path where the simulated

datasets are made available for

import by Delft-FEWS

importObserved/importFolder string (path) Full path where the observed

datasets are made available for

import by Delft-FEWS

importMessages/importFolder string (path) Full path where the messages

datasets are made available for

import by Delft-FEWS

importExternalForecast/importFolder string (path) Full path where the external

forecasts are made available for

import by Delft-FEWS

importRatingCurves/importFolder string (path) Full path where the rating curve

datasets are made available for

import by Delft-FEWS

4.4.4 Ingest of Historic events in Delft-FEWS (FSS)

Historic events are a special datatype to Delft-FEWS as they can be used to overlay on an

existing time series graph. Historic events are the only datasets which can be ingested in a

9 April 2014, draft

The Deltares Open Archive

53 of 1

Delft-FEWS client server system. Normally, the archive server has a process running (the

HistoricEventsExporter) which extracts historic events data from the archive and pushes them

to the Forecasting Shell Server import directories for ingest in the operational database.

This import process has its own data administration process, and does not use the timeseries

definition as embedded in the netcdf files. Hence an idMap may be needed to translate netcdf

variables into Delft-FEWS parameters and locations. In addition, backup and failure folders

can be defined to prevent loss of data in the automated process.

Figure 4.17 and Table 4.11 describe the configuration for importing historic events. This

module should be executed in a separate workflow compared to the other archived datasets.

Figure 4.17 Configuration of historical events import (importArchiveModule.xsd)

Table 4.11 Historical events import configuration (importArchiveModule)

Element Format Description

importHistoricalEvents importHistoricalEvents

ComplexType

root element for import of Historical

events into Delft-FEWS database

importHistoricalEvents

ComplexType

importFolder string (path) Full path where the historical events

datasets are made available for import

by Delft-FEWS

failedFolder string (path Full path where Delft-FEWS can put

any dataset which failed on import

backupFolder string (path Full path where Delft-FEWS can back

up any dataset which is being

imported

idMapId string Idmap to translate NetCDF variables

to FEWS parameters/locations

9 April 2014, draft

The Deltares Open Archive

55 of 1

5 Archive server configuration

Archive server configuration is composed of (i) content configuration (ii) data management

configuration (iii) server configuration.

5.1 Archive Content Configuration

The archive content configuration defines the event types and areas that can be discovered

from the archive the Areas.xml holds the id (= folder name) and pretty name that can be used

to discover the data. The archive content configuration is held in directory

/data/archive/archiveConfig.

The configuration is composed of:

• eventTypes.xml (see Figure 3.10)

• Areas.xml (see Figure 5.1 and Table 5.1)

Figure 5.1 Archive content configuration of areas (areas.xsd)

Table 5.1 Delft-FEWS export configuration for archiving rating curves (general section)

Element Format Description

Areas ComplexType

area id-string

name-

string

id = folder name (preferably lower case, no

spaces recommended)

name = Pretty name (Capitals, spaces etc)

5.2 Archive Server Configuration

The archive server configuration provides the folder references, server connection details and

harvester instructions for the various archive server processes. The file typically resides in:
/opt/fews/archive/managementtools/archiveServerConfig.xml.

Details are provided in Figure 5.2 with an example in Figure 5.3.

The Deltares Open Archive

9 April 2014, draft

56 of 1

Figure 5.2 Archive server configuration (archiveServer.xsd)

9 April 2014, draft

The Deltares Open Archive

57 of 1

Table 5.2 Contents of archive server configuration (archiveServer.xsd)

Element Format Description

ArchiveServer

ComplexType

archiveEnvironmentName string (optional) name to be used in archive web console

configuration ArchiveServerC

onfiguration

ComplexType

reference to archive content configuration

configurationFolder string (path) folder where the archive configuration

(Areas.xml, eventTypes.xml) resides

dataSource DataSource

ComplexType

reference to place where archive data

files reside and (THREDDS) webserver

address hosting these files

baseUrlFileServer string (http) Url of webserver hosting the data files

baseUrlArchiveData string (path) Url/path where archive data resides

events ArchiveEvents

complexType

eventsFolder string (path) Url/path to events repository, i.e. folder

where archived events reside

eventsBackupFolder string (path) Url/path where backup of events resides

to enable merging new events with the

evnts repository

exportFolderHistoricEvents string (path) Url/path to FEWS directory from which an

FSS will pick up historical events for

import

catalogue Catalogue

Complextype

reference to catalogue service

geonetwork GeoNetwork

Catalogue

ComplexType

reference to geoNetwork catalogue

service

geonetwork-baseUrl string (URL) Url to GeoNetwork webservice

groupName string Group name where catalogue records

should be added

user string geonetwork user name

password/

encryptedPassword

string geonetwork password/encrypted

password

harvester Harvester

ComplexType

general section for harvester settings

archiveMetaDataHarvester ArchiveMetadat

aHarvester

ComplexType

settings for harvester dedicated to

ArchiveMetaData

The Deltares Open Archive

9 April 2014, draft

58 of 1

updateExistingRecords boolean option to force overwrite existing

catalogue records even with any change

in dataset or metadata

harvestSubDirectory string (path) path, relative to baseUrlArchiveData, to

harvest only a sub-directory of the

archive

Figure 5.3 Example archive server configuration file

9 April 2014, draft

The Deltares Open Archive

59 of 1

6 Hardware

6.1 Archive server components

An archive needs hardware to run the application and store the data. While the archive

consists of many smaller components, the most logical grouping is presented in Figure 6.1.

The archive server is the base layer of the archive. It is primarily a large file server, with a few

support processes and a two web-services deployed with Tomcat: the THREDDS data server

and the Deltares Archive Web Server.

The catalogue is composed of two components: the catalogue service (GeoNetwork) and the

associated catalogue database. The catalogue database is typically the open source RDBMS

PostGress-PostGIS, although IT departments could opt for the more costly options Oracle

Spatial or SQL Server Spatial'

cat1

Catalogue
Service

cdb1

Catalogue
database

Archive Server
• Files

• Datasets
• Metadata
• Events

• Support Processes
• Harvester
• FileSweeper
• HistoricEventsExtractor

• Webservices
• Data server
• Archive web server

• Events
• Admin console

Deltares Open Archive Components

Figure 6.1 Archive server components (logical and physical)

In terms of hardware, various configurations could be imagined, primarily on the catalogue

side. Physical or virtual deployment, expected user load and up-time requirements play a

major role in deciding what the best configuration is for a particular organisation.

If many users will simultaneously query the catalogue, the load may be become reasonable

heavy. This would advocate for separate physical servers for the catalogue and the catalogue

web-service. If medium to low usage is expected, an IT-department may choose to host the

catalogue database instance on an existing database server and/or they may choose to

combine the catalogue database server and the catalogue webservice on one machine.

The Deltares Open Archive

9 April 2014, draft

60 of 1

When deployed within a VM environment, it might be best to put each logical component on a

separate VM. Experience needs to be gained to identify where the threshold is to move from

virtual to physical deployment.

6.2 Example hardware specs

The exact hardware specification depends very much on the anticipated use by the

organisation. Table 6.1 is just a general starter for the discussion what the exact hardware

specs should be.

Table 6.1 Example hardware specification for the archive server

Hardware Component disk space RAM CPU

Archive server 1Tb -100 Tb 4GB 2

Catalogue server 5Gb 2GB 1

Database server 5Gb 1GB 1

