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Foreword
 

This manual is an update of the internationally well-known Scour Manual, published 
in 1997, in which much of the knowledge and experience at that time on scour was cap­
tured. Knowledge that was gathered after the February 1953 disaster where many dikes 
in the south-western provinces of the Netherlands failed during a severe storm surge. 
As a consequence of this disaster, several hydraulic and soil mechanical issues had to 
be dealt with in order to be able to draw up appropriate solutions for the breaches in 
the flood defenses. In part the solutions consisted of repairing the dikes and in part of 
constructing closure dams in the estuaries. To study the effects of closures, small-scale 
experiments were carried out to obtain general information about the critical velocity 
for the stability of stones and concrete blocks, the overlapping of mattresses, the water 
movement, and the scouring effects downstream of revetments. 

Based on a systematic investigation of the time scale for two- and three-dimensional 
scour in loose sediments, relations were derived for predicting the maximum scour 
depth as a function of time. In the 1990s, these scour relations were slightly modified 
and used for the design of the storm surge barrier in the Nieuwe Waterweg near Rot­
terdam and for the prediction of the scour process downstream of the barrier in the 
Eastern Scheldt. 

Following the publication of the Scour Manual in 1997, more experience is acquired 
with existing formulas and the knowledge in the field has widened, especially related 
to turbulence. The original Scour Manual is partly rewritten to capture this infor­
mation. Moreover, attention is paid to mathematical scour and erosion models, risk 
assessment and erosion of cohesive sediments. Some applications of this knowledge 
in projects are described in case studies at the end of the manual. In this update, it 
was chosen not to address coastal and offshore structures. For wave-induced scour 
reference is made to the 1997 version of this manual or to other international manuals. 

This update of the Scour Manual concerns the scour processes and phenomena tak­
ing place near hydraulic structures due to currents. The manual is intended primarily 
for hydraulic engineers in the field; however, it may also have appeal to researchers in 
hydraulic engineering. The scour process has still not yet been explained in a generally 
accepted manner, and therefore it would be only appropriate to keep discussing their 
mechanism and formulations for the simpler cases. 



 xvi Foreword 

The updated Scour Manual was prepared by the original authors and supervised by 
a CUR committee. The update is dedicated to Mr. G. Vergeer, a strong promotor of 
this update, who passed away in 2018. 

I would like to thank all those who contributed their time and knowledge to the up­
date of the Scour Manual and especially the companies that contributed to the cases. 

I wish it will offer the practicing engineer again a guideline in the field. 
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a factor, a = cot βa + cot δ – 
a 
A 

deck block height of a bridge 
cross-section 

m 
m2 

Aa 
Ab 
Af 
Ar 

cross-section area of abutment 
two-dimensional blocking area of abutment 
cross-section area upstream of abutment 
cross-section area of the river 

m2 

m2 

m2 

m2 

B length of structure (perpendicular to f low direction), pier width m 
b factor, b = cot γ2 − cot γ1 (−) – 
bu diameter of pipe or thickness of jet at x = 0 (m) m 
B width of f low m 
B load factor in propeller scour – 
Bc stability factor in propeller scour equation – 
B1 width of the river upstream of the constriction m 
B2 
c 
c 

width of the river at the constriction 
parameter c = 103 N/m3 

cohesion 

m 
N/m3 

N/m2 

ca shape factor of scour hole, ca = 22 – 
c f resistance coeff icient , cf = 0.010 (range 0.005–0.020) – 
cs coeff icient of Schoklitsch, cs = 4.75 m0.16s0.57 – 
cv velocity distribution coeff icient , cv = 1.0 – 
co coeff icient , c0 = 0.29 (sand) to 1.24 (gravel) – 
c2H dimensionless parameter for 2D-H jets – 
c2V dimensionless parameter for 2D-V jets – 
c3H 
C 
Cf 

dimensionless parameter for 3D-H jets 
Chézy coeff icient 
fatigue rupture strength of clay, Cf = 0.035Co N/m2 

– 
m1/2/s 
N/m2 

Ck constant that ranges from 0.030 (for scour slopes less steep than – 

C0 

1V:3H) to 0.045 (for backward facing step) 
cohesion in the Mirtskhoulava formula N/m2 

d particle diameter m 
da size of detaching aggregates, da = 0.004 m m 
d0 characteristic length, d0 = 1/2 hd, hd is the drop height m 
d50 median particle diameter for which 50% of the mixture is smaller m 
d50f median f ilter size m 
d90 particle diameter for which 90% of the mixture is smaller m 
D height of sill, step height m 
D thickness of cohesive layer m 
D jet or pipe diameter m 
DF f ilter thickness m 
Dp
Dr 

drop height of grade-control structure 
relative soil density 

m 
– 

D90* dimensionless grain diameter – 
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D* sedimentological diameter, d(Δg/ν2)1/3 –
e actual void ratio, e = Vv/Vs –
emax maximum void ratio –
emin minimum void ratio –
fc friction coeff icient , g/C2 –
fc roughness function, C/C0, C0 = 40 m1/2/s –
fu undrained shear strength N/m2

F fraction of f ines of soil smaller than 0.075 mm –
Fdown downward force N
Flift lif t force N
Fr Froude number related to water depth, Fr = U0/(gh)l/2 –

Frs Froude number related to pressure 
( )

Fr
V

g h hs
uc

u b
=

−
–

Fr1 Froude number just upstream of the hydraulic jump –
Fr1 Froude number in the jet , Fr1 = U1/(gbu)1/2 –
Fr1 Froude number, Fr1 = U1/(gy1)

0.5 –
g acceleration due to gravity, g = 9.78–9.83 m/s2 m/s2

GB width of scour hole at broken pipeline m
GL length of scour hole at broken pipeline m
h f low depth m
hb water depth under a bridge m
he critical water depth m
hc equilibrium water depth after functioning of a falling apron m
hi stages in the water depth during functioning of a falling apron m
hp distance between propeller axis and bed m
ht tailwater depth m
hu upstream water depth m
h0 initial or average f low depth m
h0(0) tide-averaged f low depth m
h1 average depth in contracted area m
h2 average depth in upstream section m
H height between head and tailwater levels m
H dif ference in height between upstream and downstream water levels m
I volume of scour hole per unit width m2

k turbulent kinetic energy m2/s2

km mean turbulent kinetic energy where scour depth is at maximum m2/s2

ks Nikuradse bed roughness (rough: ks = 3d90, smooth: ks = 2d50) m
kmax maximum turbulent kinetic energy in mixing layer m2/s2

K non-dimensionless constant , K = 330 m2.3/s3.3 m2.3/s3.3

K factor for various inf luences, such as pier shape and f low angle –
Kb coeff icient –
K1 coeff icient , K /(gl.43μ0.43) (K in m2.3/s3.3) –
l length of structure parallel to the f low direction m
L length of bed protection m
Lins bed protection length to prevent shear failure m
Lmin minimum bed length m
Lp bridge pier length m
Lr length hydraulic jump m
Ls length of scour hole m
Ls failure length m
Ls ship length m
LL liquid limit –
m constriction ratio, m = 1− B2/B1 –
n porosity, default 0.4 –
n scale ratio –
n Manning’s coeff icient s/m1/3

N number of ship passages –
p(ξ ') probability density function –



 

 

 
 

 
 

 

  
 

 

   
  

 

 

  

  
  

 
 

       

 
 

 
 

 
 

 

 
 

 
 

 

 

List of main symbols xxi 

P(ξ ') cumulative density function – 
Pf failure probability – 
PI 
q 
q 
qs 
Q 
Q 
Qc 
Qf 
Q1 
Q2 

plasticity index 
discharge per unit width 
discharge in a 2D-H jet 
(reduced) sediment transport per unit width (including porosity) 
discharge 
discharge in a 3D-H jet 
discharge through main river (without f loodplain), see Fig. 3.1 
discharge f loodplain 
discharge in the upstream channel 
discharge in the contracted section 

– 
m2/s 
m2/s 
m2/s 
m3/s 
m3/s 
m3/s 
m3/s 
m3/s 
m3/s 

r local turbulence intensity – 
r 
r0 

discrepancy ratio 
depth-averaged relative turbulence intensity, σu/U 

– 
– 

r0,m depth averaged relative turbulence intensity when scour depth is – 
maximal 

R strength component Var. 
R hydraulic radius m 
R radius of curvature of the centreline m 
R erosion parameter kg/ 

(m·s3) 
R erosion rate m/s 
Re Reynolds number, Re = Uh/ v – 
Re* Reynolds stress number related to particle diameter, Re = U*D/ v – 
s 
sb 
ss 

specif ic density of bottom material 
bed load 
suspended load 

– 
m2/s 
m2/s 

S load components Var. 
S1 slope energy grade line – 
t time s 
tc time referring to conditions where qs = 0 s 
tp 
t1 

time referring to live bed conditions 
characteristic time at which the maximum scour depth equals h0 

s 
s 

t1 characteristic time at which ym = λ(s) s 
t l ,u 
t1 
t2 

characteristic time at which ym = h0(0) 
time at which αU0 f irst exceeds Uc during f lood tide 
time at which αU0 drops below Uc during ebb tide 

s 
s 
s 

T half tidal period where αU0 > Uc (s), T = t2 − t1 s 
T0,s 
u 

time scale for change of the cross-section prof ile 
local longitudinal f low velocity 

s 
m/s 

u mean velocity in the x-direction m/s 
um maximum velocity of u at any x-section m/s 
u* bed shear velocity m/s 
u*,c 
U 

critical bed shear velocity 
time-averaged velocity 

m/s 
m/s 

Ub water velocity just above the bed due to the return current m/s 
Uc critical averaged f low velocity for uniform f low; Uc can be depth­ m/s 

averaged or the near-bed critical velocity 
Uc critical depth-averaged f low velocity m/s 
Ud characteristic tidal mean f low velocity m/s 
Ug
Uh 

mean gap velocity 
horizontal component jet velocity 

m/s 
m/s 

Um depth-averaged velocity where scour depth is at maximum m/s 
Um,t 
Umax 

maximum velocity during a tide 
maximum velocity 

m/s 
m/s 

Ur ship-induced return current below the ship’s keel m/s 
Uv vertical component jet velocity m/s 
U0 depth-width-averaged f low velocity, Q/A m/s 



 

 

 
 

  
 

 

 
 

 
 

 

 
 

 

 
     

   
   

   
     

  
   

 

   

 
  

   
   

 

xxii List of main symbols 

2gH 

U0 depth-averaged f low velocity upstream of scour hole m/s 
U0 ,c critical f low velocity m/s 
U1 average f low velocity in the jet m/s 

m/s U1 jet velocity entering tailwater, U1 = 
U1 ef f lux velocity at x = 0 (m/s) m/s 
U2 average f low velocity downstream of the scour hole m/s 
Vs ship speed (m/s) m/s 
Vs volume of solids m3 
Vuc critical velocity pressure scour m/s 
Vue effective velocity pressure scour m/s 
Vv volume of voids m3 

V(t) volume of scour hole per unit width m3/m 
Vr(t) reduced volume of scour hole per unit width m3/m 
w water content – 
ws fall velocity m/s 
W1 bottom width in the of the upstream main channel m 
W2 bottom width in the contracted section m 
x longitudinal distance m 
y vertical distance m 
yc critical scour depth m 
yd depth after a sliding m 
ym maximum scour depth m 
ym(t) maximum scour depth as a function of time m 
ym,e equilibrium scour depth m 
ym,e,max maximum equilibrium scour depth m 
ym,e|50% equilibrium scour depth exceeded by 50% of the scour m 
yad bed elevation changes due to long-term deposition or bed erosion m 
ybe bend scour m 
ybf bed form trough depth m 
ycf mconfluence scour 

constriction scour m 
ys local scour m 
ys,actual actual scour depth m 
yss equilibrium scour depth (static scouring) m 
ytot total scour depth m 
y1 thickness of the jet at the vena contracta m 
z vertical distance from the axis of the jet at any section m 
Z reliability parameter Var. 
Z scour number – 
α f low and turbulence coeff icient (or angle) – 
αF turbulence coeff icient , αF = (1 + 3r0)cv – 
αg gap coeff icient , αg = 2.4 – 
αga abutment coeff icient , αga = 1.0 or 1.4 – 
αRAJ constant , αRAJ = 0.3 – 
α l turbulence coeff icient , α l = 1.5 + 5r0 – 
αu coeff icient , to be determined as αu = α  – Uc/U0 – 
αv Veronese coeff icient , αv = 1.9 – 
α1 angle upstream wing wall of abutment ° 
α2 angle downstream wing wall of abutment ° 
β upstream scour slope (or angle) ° 
β reliability index – 
β coeff icient; β = 0.67–0.8 – 
βa average slope angle before instability ° 
γ coeff icient (or angle) – 
γ weight per unit volume, γ = 10 kN/m3 kN/m3 

γ coeff icient , γ = 0.4–0.8 ­
γ coeff icient , γ = 0.22–0.23 ­
γs safety factor ­
γwet wet weight per unit volume kN/m3 

ycs 



List of main symbols  xxiii

γ l sliding erosion slope angle after instability °
γ2 sliding deposit slope angle after instability °
δ slope angle downstream of the point of reattachment °–
δ slope angle downstream of the deepest point of the scour hole °
Δ relative density, ρs/ρ − 1 –
Δt time step s
η η = z/x –
η coeff icient , η =0.75–0.85 –
ηb coeff icient –
ηs coeff icient –
θ temperature °C
θ angle between two upstream branches of a confluence °
θ jet angle near surface °
κ constant of von Kármán, κ = 0.4 –
λ characteristic length scale m
μ shape factor or roughness factor –
μ average value Var.
μR average value of the strength parameter R Var.
μS average value of the load parameter S Var.
μZ average value of the reliability parameter Var.
ν kinematic viscosity m2/s
ξξ ratio measured and calculated scour depth –

ρ f luid density kg/m3

ρb density bed material kg/m3

ρs material density kg/m3

σ relative standard deviation –
σg sediment gradation, σg = d84/d50 –
σu standard deviation of the instantaneous longitudinal velocity 

averaged over the depth
m/s

σv standard deviation of instantaneous velocity in transverse direction m/s
σw standard deviation of instantaneous velocity in vertical direction m/s
σZ standard deviation of the reliability parameter Z Var.
τc critical bed shear stress kg/m.s2

τ0 bed shear stress kg/m.s2

φ dimensionless transport rate –
ϕ angle of repose, ϕ = 40° °
φʹ angle of internal friction –
χe turbulence parameter –
ψ mobility or Shields parameter –
ψc critical Shields parameter –
ω angle of attack °
ω turbulence coeff icient , ω = 1 + 3r0 –
ω fall velocity m/s
Ω current-related sediment mobility, = ψ /ψc –



 

 

 

 

 

 

 
 
 

 
 
 

 

 

 
 

List of main definitions
 

•	 General scour: degradation of the main channel bed due to an imbalance of the 
sediment transport entering and leaving a control volume. This occurs, for exam­
ple, when the sediment transport capacity increases due to accelerating flow. 

•	 Bend scour: local scour in the outer bend of a river due to helical flow; maximum 
scour depth usually at the downstream side of the bend. 

•	 Constriction scour: local scour due to the transition into a narrower or shallower 
section of the river. 

•	 Confluence scour: scour due to the confluence of flows from two upstream river 
branches. 

•	 Non-uniform flow: flow where flow velocity and other hydrodynamic phenomena 
differ spatially. 

•	 Equilibrium scour depth: constant scour depth reached after some time, when the 
conditions remain constant. 

•	 Plunging jets: water jets that fall from a certain height onto a free water surface. 
•	 Submerged jets: water jets with an outflow opening under water. 
•	 Grade control structure: structure to control the water level where water flows 

over or through the structure. 
•	 Shear failure: soil mechanical instability of non-cohesive soil. 
•	 Flow slide: soil mechanical instability of loosely packed sand. 
•	 Two-dimensional scour: scour as a result of a long (normal to the flow direction) 

sill or infinitely long outflow opening. The scour is equal over the full length or 
width. A typical example is an underwater sill in a closure of an estuary. 

•	 Three-dimensional scour: scour downstream of a structure with a limited width 
(normal to the flow direction). At the sides of the outflow opening, eddies occur 
causing extra scour. Typical examples: spurs, outflow of culverts. 

•	 Clear water scour: scour with transport of bed material only due to the presence of 
a structure. Without the structure, no bed load or suspended sediment transport 
would occur. This type of scour occurs in laboratory conditions and in areas with 
scour-resistant beds. It results in deeper scour holes. 

•	 Live-bed scour: scour with supply of bed material from upstream. 
•	 Bed load transport: sediment transport by rolling, sliding and saltating (jumping 

up into the flow, being transported a short distance then settling) of sediment par­
ticles mainly just above the river bed. 



 

 

 

 

List of main def initions xxv 

•	 Suspended load transport: transport of sediment that is suspended in the water 
column by turbulence. The suspended load usually consists of smaller sediment 
particles than bed load. 

•	 Abutment: horizontal construction into the flow as part of an approach embank­
ment for a bridge. 

•	 Groyne or spur: horizontal constriction of a flow to train a river to provide suffi­
cient depth for navigation and to prevent erosion of the river bank. 
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Chapter 1 

Introduction 

1.1 General 

A hydraulic structure is generally intended to provide a practical measure to solve an 
identified problem. After problem identification, subsequent stages are determined by 
a series of decisions and actions culminating in the creation of a structure or struc­
tures to resolve the problem. Aspects that may affect the eventual outcome of the 
design process have to be assessed. In addition to hydraulic, geotechnical and engi­
neering characteristics, aspects such as social conditions, economics, environmental 
impact and safety requirements also influence the design process. 

Within the scope of the Dutch Delta works, the Dutch Ministry of Transport, Pub­
lic Works and Water Management and Delft Hydraulics (now merged into Deltares) 
conducted systematic research with respect to the prediction of the formation of scour 
holes. After the catastrophic flood disaster in 1953, the Delta Plan was formulated to 
protect the Rhine-Meuse-Scheldt delta against future disasters. Dams with large-scale 
sluices were planned in some estuaries. The expected severe scour necessitated acquir­
ing a better understanding of the scour process. 

To obtain detailed information about the physical processes playing a role in scour 
development, Delft Hydraulics (Deltares) carried out many experiments in which 
several parameters of the flow and the scoured material varied. From the results of 
experiments in flumes, with obvious difficulties of scale effects and limitations in in­
strumentation, some semi-empirical relations were obtained that describe the erosion 
process as a function of time and position (Breusers, 1966, 1967; van der Meulen & 
Vinjé, 1975). In addition, design criteria were deduced for the length of bed protection. 
These were based on hundreds of shear failures and flow slides that occurred along the 
coastline in the south-western part of the Netherlands. 

Understanding of the physical processes and mathematical modelling of the wa­
ter and sediment movement in rivers, estuaries and coastal waters have made much 
progress in recent years. This has led to a number of more or less ready-to-use 
mathematical model systems, but it has also raised many new research questions. 
In the early 1990s, a morphological model for the generation of scour holes behind 
hydraulic structures was developed. This morphological model was based on the 
2D Navier-Stokes and convection-diffusion equations and used for the calibration 
and verification of semi-empirical relations that predict the scour process. Nowadays 
sophisticated CFD (Computational Fluid Dynamic) models are available for scour 
computations. 



  

 
 

 

 

 

 
 

 
 
 
 
 

 

 
 
 

2 Introduction 

This manual highlights the so-called Breusers method which describes the 
maximum scour depth as a function of time, including the practical equilibrium value 
near hydraulic structures. Scour due to three-dimensional flow can easily be predicted 
when this method is applied in combination with computational results of depth­
averaged hydrodynamic models or with measurements obtained from scale models. 
The accuracy of the scour computation depends mainly on the accuracy of the flow 
velocities and the turbulence intensities just above the protected bed. According to 
Breusers (1966), the development of the scour process depends entirely on the average 
flow velocity and depth-averaged relative turbulence intensity at the transition from 
the fixed to the erodible bed. Applying this concept restricts the scour prediction to a 
single computation. No information is needed concerning the near-bed velocities and 
bed turbulence in the scour hole. 

This manual is an update of the original book published in 1997. However, it deals 
only with scour due to currents. Scour due to waves is not addressed in this update. 
This manual addresses various new aspects, such as risk assessment, scour of rock and 
new theory-based formulas for the prediction of scour at hydraulic structures but also 
an update of the available mathematical scour and erosion models. Last but not least, 
a fully renewed chapter has been added with recent experiences of consultants and 
contractors with scour design. 

1.2 Scope of this manual 

The purpose of this scour manual is to provide the civil engineer with useful practical 
methods to calculate the dimensions of scour holes in the prefeasibility and prelimi­
nary stages of a project, and to furnish an introduction to the most relevant literature. 
The manual contains guidelines which can be used to solve problems related to scour 
in engineering practice and also reflects the main results of all research projects in the 
Netherlands in recent decades. A complete review of all the available references on 
scour is beyond the scope of this manual. The most relevant manuals are Breusers and 
Raudkivi (1991), Melville and Coleman (2000) and May et al. (2002). Furthermore, the 
International Conference on Scour and Erosion provides relevant information and is 
important for the most recent developments. 

The scour depth as a function of time can be predicted by the so-called Breusers 
equilibrium method. Basically, this method can be applied to all situations where 
local scour is expected. However, the available knowledge about scour is not suffi­
cient for applying the method to scour at each type of structure. Structure-specific 
scour prediction rules are presented then. The treatment of local scour is classified 
according to different types of structures. Each type of structure is necessarily 
schematised to a simple, basic layout. The main parameters of a structure and 
the main parts of the flow pattern near a structure are described briefly insofar as 
they are relevant to the description of scour phenomena. Detailed and theoreti­
cal descriptions of the flow phenomena are not included because at this stage, the 
consequences of such descriptions are minimal in relation to engineering prac­
tice. Nonetheless, Hoffmans (2012) developed new formulas for equilibrium scour. 
Evaluating a balance of forces for a control volume, he was able to develop scour 
equations for different types of flow fields and structures, i.e. jets, abutments and 
bridge piers. 



 

 

 
 
 

 

 

 
 
 
 
 
 
 
 

 

 

3 Introduction 

As many scour problems are still not fully understood, attention is paid to the 
validity ranges and limitations of the formulas, as well as to the accuracy of calcu­
lations of the maximum scour depth during the lifetime, the upstream scour slope 
and the failure length. Due to shear failures or flow slides, the scour process can 
progressively damage the bed protection. This will lead to the failure of hydraulic 
structures. 

The presented Breusers equilibrium method can be applied directly in engineering 
practice for nearly all types of structures. Accurate local flow velocities and turbu­
lence intensities resulting from three-dimensional flow models can act as inputs for 
the Breusers equilibrium method, which can be considered as a continuation and an 
expansion of the work of Breusers (1966). In other words, one may speak of a revitali­
sation of the Breusers formula, with which a lot of experience has been gained, mainly 
in the Netherlands but also abroad. 

1.3 Reading guide 

The manual is divided into seven parts. The first three parts give a general introduc­
tion to the subject. The next four parts deal with calculation methods for predicting 
scour near hydraulic structures and, in the final part, some cases of scour at prototype 
scale are described. A brief summary of each chapter follows. 

Chapter 2 – Design process 

It is crucial to design hydraulic structures that are reliable and safe during their life 
cycle. To ensure safe long-term functioning of hydraulic structures, it is necessary 
to consider boundary conditions, risk assessment and measures to prevent scour. 
After having addressed the boundary conditions, we discuss the risk assessment 
and the fault tree analysis. Two methods are treated: one based on safety factors 
and the other on failure probability. When applying these techniques, one should 
keep in mind what the goal is of the design: a pre-feasibility study or a final design. 
Examples show how to deal with these methods. Furthermore, protective measures 
are mentioned. 

Chapter 3 – Design tools 

The total scour which may occur at the site of a structure can be estimated with mathe­
matical scour and erosion models. An overview is given of available tools. In principle, 
scour may be considered as a combination of general scour and local scour resulting 
from different processes. In addition, time phases can be distinguished in the scour 
process. We present these phenomena for currents. 

A more or less continuous scouring process may suddenly be disturbed by the 
occurrence of geotechnical instabilities along the upstream scour slope. Shear failures 
and flow slides influence the stability of hydraulic structures. In the extreme case, these 
instabilities involve large masses of sediment and cause a major change of the shape 
of the upstream side of the scour hole in a relatively short period of time. Some design 
criteria based on storage models are presented. 



  

  

 

 
 
 

 
 
 
 

 
 
 

  

 
 
 
 
 
 

 
 

 
 
 
 

 

4 Introduction 

Chapter 4 – Initiation of motion 

Scour results from transport of bed materials. The non-uniform flow is responsible for 
this, which is usually expressed by either a turbulence coefficient or a dominating flow 
velocity, or by both. Turbulence is the most important phenomenon determining ero­
sion. Relations for the turbulence intensity and the critical flow velocity are presented 
for various situations. The design graphs of Shields are presented for non-cohesive bed 
materials, such as sand and rock. For cohesive soils such as clay and peat, the method 
of Mirtskhoulava and also empirical relationships based on the plasticity index are 
given. In addition, erosion rate formulas are also presented. 

Chapter 5 – Jets 

We discuss scour due to several jet forms, such as plunging jets, submerged jets, 
horizontal and vertical jets, and two- and three-dimensional jets. In addition, 
we treat the complex flow pattern of jets. We also address scour by ship-induced 
currents, scour due to propellers and scour due to jets in the case of broken pipe­
lines. Semi-empirical and theory-based relations for the scour process behind a 
short-crested sill are presented. The semi-empirical relations are often used for 
grade-control structures, where the flow above the structure is supercritical, and 
for the time-dependent development of the maximum scour depth downstream of 
a hydraulic jump. The structure of the semi-empirical relations shows a good simi­
larity with the Breusers approach. The new relations have a theoretical base as they 
have been derived using the balance of forces. However, both semi-empirical and 
theory-based relations must be clearly understood prior to any attempt to use them 
for design purposes. 

Chapter 6 – Sills 

We summarise calculation methods for sills. A distinction is made between sills with a 
broad or a sharp crest and between sills with and without bed protection. Usually, the 
flow above a sill is subcritical, but depending on the downstream water level, the flow 
may become supercritical. We discuss the time-dependent and equilibrium behaviour 
of scour holes in sandy beds in relation to closure works (broad-crested sills) in tidal 
channels. Special attention is paid to the effects of turbulence and flow pattern on the 
scour process. 

We describe an approximate method (reduction method) for calculation of the 
maximum scour depth. This takes the influence of upstream sediment supply into 
account. In addition, we present a method to adjust this calculation method for un­
steady flow, especially tidal flow. These methods were successfully applied during 
the design of the Eastern Scheldt Storm Surge Barrier. The upstream scour slope 
determines the stability of the upstream part of the scour hole and the adjacent bed 
protection. A relation for the upstream scour slope, based on a probabilistic model 
for bed load transport, is presented. Relations derived from systematic scour inves­
tigations are verified by two field experiments, among which the scour at the Eastern 
Scheldt Storm Surge Barrier. 



 

 

 
 
 
 
 
 
 

  

 

  

 

 

 
 

5 Introduction 

Chapter 7 – Abutments and groynes 

Relations are presented for predicting local scour at the head of abutments, for which 
several names are used (spurs, groynes, guide or river bunds) in the literature. We also 
present recently developed formulas based on a balance of forces. We briefly discuss 
the flow characteristics around blunt and streamlined abutments. Attention is also 
paid to the time scale of the scour process and to combined scour (e.g. local scour and 
bend scour or constriction scour). Since the literature contains many scour relations, a 
number of generally acceptable predictors have been selected for this manual. Finally, 
attention is paid to failure mechanisms and measures to mitigate scour near abutments. 

Chapter 8 – Bridge piers 

After discussing the flow characteristics at the pier and in case of a submerged bridge, 
relations for estimating scour around bridge piers are summarised. These relations 
are mostly empirical, but we also present a theoretical relation based on a balance 
of forces. Correction factors and design graphs for the equilibrium scour depth are 
discussed. Attention is paid both to the equilibrium scour depth and to the time scale 
of the scour process. Methods are given to predict scour at bridge piers with a footing 
or pile cap and for pressure scour. Indications are provided for determining the area 
to protect against scour. 

Chapter 9 – Realised case studies on prototype scale 

Nine realised case studies on the prototype scale, based on feasibility studies or design 
studies, are evaluated in order to determine the practical use of the scour relations in 
this manual. These cases are as follows: 

•	 Four cases about bridge pier scour: Camden motorway bypass, crossing of a 
high-voltage power line, pier scour in bypass channel, and pressure scour; 

•	 Two cases about culvert scour: Waterdunen project, and scour development in 
front of a culvert; 

•	 Two cases about jet scour: propeller- and thruster-induced jet scour; 
•	 One case about sill scour: weir at Grave. 
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