
 1

Description and overview of

GROW WITH THE
FLOW PLATFORM

Yaniv Ben-Yosef

Milan Innovincy B.V.

Version 1.08 - November 2021

 - 2 -

Table of Contents

1 PREFACE 5

1.1 Purpose of this document 5

1.2 Target audience 5

2 INTRODUCTION 6

2.1 What is the Grow-with-the-Flow (GWTF) project? 6

2.2 What is the GWTF Platform 7

2.3 Philosophies and principles 7

2.4 Architectural guidelines 9

2.4.1 The SOLID principle 9

2.4.2 Reuse 10

2.4.3 Reactive Programming 10

3 HIGH-LEVEL ARCHITECTURE 11

3.1 Grow with the Flow architecture 11

3.2 Grow with the Flow Platform architecture 13

3.2.1 Batch Ingestion 14

3.2.2 Stream Ingestion 15

3.2.3 Store and Process 16

3.2.4 Batch Exposure 16

3.2.5 Streaming Exposure 18

3.2.6 Data Governance 18

3.2.7 General activities 20

3.3 The relation to Spatiotemporal Agribusiness Framework (SAF) platform 21

4 GWTF PLATFORM ARCHITECTURE IN DETAIL 22

 - 3 -

4.1 Data and Storage 22

4.1.1 Data stored in the system 22

4.1.2 Storage 22

4.2 Data Flows 23

4.2.1 From FEWS to the GWTF Platform 23

4.2.2 The GWTF Platform API 38

4.2.3 API documentation 43

4.3 Software, Open-source software and libraries 43

4.3.1 Akka 44

4.3.2 GeoTools 44

4.3.3 NetCDF Java 44

4.3.4 Keycloak 44

4.3.5 ReactiveMongo 45

4.3.6 Logback 45

5 CLOUD INFRASTRUCTURE, CONFIGURATION, AND DEPLOYMENT 46

5.1 Docker 46

5.2 The production environment 47

5.3 Disk utilization on the server 49

5.4 Deployment process 51

5.5 SSL and HTTPS in production 52

5.6 Monitoring the system 52

5.6.1 Monitoring the servers 52

5.6.2 Log files 53

6 APPENDIXES 55

6.1 Catalog of the Model Variables 55

6.2 GWTF Platform API documentation 55

6.3 Production Specs 55

 - 4 -

6.3.1 GWTF Platform Server on Google Cloud Platform 55

6.3.2 MongoDB Database Specs on mongodb.com 56

6.3.3 Database backup policy 56

6.4 Settings 57

6.4.1 Web API service settings 57

6.4.2 Ingest service settings 57

6.5 Future steps 58

6.5.1 Data Governance 58

6.5.2 Security 58

6.5.3 Compliance and Legislation 58

6.5.4 Testing procedures 58

6.5.5 Maintenance procedures 59

6.5.6 FAQ and Troubleshooting guide 59

 - 5 -

1 Preface

1.1 Purpose of this document

The purpose of this document is to provide an entry point into understanding the GWTF

platform, including goals, principles, architecture, software design, algorithms and operation.

This document can help understand how the system works, how to deploy it and how to perform

day-to-day operations of the platform.

1.2 Target audience

The main audience of this document is GWTF group members who are interested in

understanding the inner working of the platform, as well as newly joined members who will want

an entry point to the platform to get up to speed quickly.

The document is technical in nature, and the top priority is to address experienced software

developers. However, the document strives to be as clear as possible for the non-technical person

so that they can also benefit from it.

 - 6 -

2 Introduction

2.1 What is the Grow-with-the-Flow (GWTF) project?

Water is an important resource for the Agro and Food sector. At the same time, partly due to

climate change, the risk of water scarcity has increased. This has major implications for securing

our food supply in the long term.

Various parties are involved in managing water resources and making water available. Each from

its own discipline and with its own objectives. The efficient management of water resources and

the provision of water therefore requires cooperation between the parties.

A number of these parties have found each other in a proposed collaboration under the TKI Agro

& Food/TKI Deltatechnology subsidy programs to achieve a better collaboration, not limited to

the current participants, with the aim of developing innovative tools that focus on better

managing the water resources, considering mutual interests.

These parties are:

• Waterboard Aa & Maas

• Waterboard Vallei and Veluwe

• Achmea Agro Insurance

• Lamb Weston/Meijer

• Deltares

• Wageningen Environmental research

• Cap Gemini

 - 7 -

2.2 What is the GWTF Platform

Since GWTF is intended to be used by different parties of several types (farmers, waterboards,

corporations) there needs to be a central repository where data is stored and processed, and from

which it can be consumed.

GWTF Platform is a software system designed to be that central storage and processing of

GWTF, which provides ways for ingesting information from multiple sources, processing it, and

providing ways to expose the information to interested parties.

2.3 Philosophies and principles

The GWTF partners have developed a set of philosophies and principles that serve as a guideline

for the project. The final result was a group effort which is shown in the following page.

 - 8 -

P
re

li
m

in
ar

y
V

is
io

n
B

u
si

n
es

s
D

at
a

Sy
st

em

So
lu

ti
o

n
s

Te
ch

n
ic

al
O

p
er

at
io

n

A
s

a
sy

st
em

 in
te

gr
at

o
r,

 w
e

se
e

o
p

p
o

rt
u

n
it

ie
s

to
 d

el
iv

er
 o

u
r

ex
p

er
ti

se
 a

t
th

e
re

gi
o

n
al

 w
at

er
 a

u
th

o
ri

ti
es

B
ei

n
g

a
tr

u
st

w
o

rt
h

y,

ec
o

n
o

m
ic

al
ly

 v
ia

b
le

, s
ki

ll
ed

p
ar

tn
er

 in
 t

h
e

co
n

so
rt

iu
m

th
at

 k
ee

p
s

ad
d

in
g

n
ew

fe
at

u
re

s
to

 t
h

e
p

la
tf

o
rm

 a
n

d

ex
tr

ac
t

b
u

si
n

es
s

va
lu

e
fr

o
m

th
e

p
la

tf
o

rm

W
e

cr
ea

te
 a

 n
ew

o
ff

er
in

g
in

ag
ri

b
u

si
n

es
s

Fa
rm

er
s

w
il

l r
em

ai
n

th
e

o
w

n
er

 o
f t

h
ei

r

d
at

a.
 In

si
gh

ts

ga
th

er
ed

 a
n

d

ca
lc

u
la

te
d

 o
n

 t
h

e

p
la

tf
o

rm
 r

em
ai

n
s

o
n

th
e

p
la

tf
o

rm
 a

n
d

re
m

ai
n

s
o

w
n

ed
 b

y

th
e

p
la

tf
o

rm

Sa
fe

gu
ar

d
in

g
an

 o
p

en
 p

la
tf

o
rm

So
lu

ti
o

n
 a

rc
h

it
ec

tu
re

,

p
la

tf
o

rm
 d

ev
el

o
p

m
en

t

ac
co

rd
in

g
to

 d
es

ig
n

th
in

ki
n

g
p

ri
n

ci
p

le
s

Fo
r

th
e

p
la

tf
o

rm
 t

o
 b

e

vi
ab

le
 (i

n
 t

ec
h

n
ic

al
 a

n
d

ec
o

n
o

m
ic

al
 t

er
m

s)
, t

h
er

e

n
ee

d
s

to
 b

e
a

cl
o

u
d

p
ro

vi
d

er
 s

it
u

at
ed

 in
 N

L

ca
p

ab
le

 o
f d

o
in

g
su

b
-

se
co

n
d

 c
al

cu
la

ti
o

n
s

o
n

b
ig

 d
at

a
se

ts
 a

ga
in

st
 fa

ir

p
ri

ce
s

W
it

h
 G

w
tF

 u
p

 a
n

d
 r

u
n

n
in

g,
 w

e
ca

n

p
ro

vi
d

e
in

te
gr

at
io

n
 o

f G
w

tF
 t

o

R
W

A
s

 T
h

er
e

w
il

l c
o

m
e

a
le

ga
l c

o
n

st
ru

ct
, f

e
N

G
O

, B
V

, N
V

 o
r.

..

Th
e

d
at

a
d

o
m

ai
n

 fo
r

th
e

ir
ri

ga
ti

o
n

W
e

cr
ea

te
 a

 n
ew

o
ff

er
in

g,

b
u

si
n

es
sm

o
d

el
 in

ag
ri

b
u

si
n

es
s

w
e

su
p

p
o

rt
 in

 t
h

e

sa
fe

gu
ar

d
in

g
o

f t
h

e

p
ro

ce
ss

 b
es

t
u

se
 o

f

th
e

d
at

a
-

in
fo

rm
at

io
n

su
p

p
o

rt
 c

o
o

p
er

at
io

n
 in

 t
h

e
to

ta
l

ec
o

 s
ys

te
m

 o
f p

ar
tn

er
s

en
 h

ar
d

-

an
d

 s
o

ft
w

ar
e

Fo
r-

p
ro

fi
t,

 a
im

in
g

fo
r

co
n

ti
n

u
o

u
s

im
p

ro
ve

m
en

t
o

f b
u

si
n

es
s

so
lu

ti
o

n
s

Te
ch

n
ic

al
 w

o
rk

in
g

p
la

tf
o

rm
 r

em
ai

n
s

h
ig

h

p
ri

o
ri

ty
 w

it
h

in
 t

h
e

o
rg

an
iz

at
io

n

Th
e

o
rg

an
iz

at
io

n
 c

an
 h

ir
e

w
o

rk
fo

rc
e

fr
o

m
 C

ap
ge

m
in

i t
o

 d
o

th
e

m
ai

n
te

n
an

ce
 w

o
rk

O
p

en
 s

er
vi

ce
: u

se
rs

 t
h

at
 h

av
e

b
ee

n
 g

iv
en

 a
cc

es
s

to
 t

h
e

p
la

tf
o

rm

ca
n

 u
se

 t
h

e
p

la
tf

o
rm

 t
o

 a
ll

 fu
n

ct
io

n
al

it
ie

s
th

at
 t

h
e

p
la

tf
o

rm
 o

ff
er

s

A
d

vi
ce

 o
n

 ir
ri

ga
ti

o
n

2
4

*7
 s

er
vi

ce

w
in

d
o

w

It
 w

il
l b

e
m

ad
e

as

ea
sy

 a
s

p
o

ss
ib

le
 t

o

d
el

iv
er

 d
at

a,
 o

n
 a

 fi
t-

fo
r-

p
u

rp
o

se
 (F

4
P

)

p
ri

n
ci

p
le

s

In
te

gr
at

io
n

 o
f a

p
p

li
ca

ti
o

n
 s

ys
te

m
So

lu
ti

o
n

s
ar

e
o

p
en

 fo
r

cl
ie

n
ts

 t
h

at
 w

an
t

to

cr
ea

te
 w

in
-w

in
 s

er
vi

ce
s

Te
ch

n
o

lo
gy

 is
 s

el
ec

te
d

b
as

ed
 o

n
 t

h
e

se
rv

ic
e,

 n
o

t

th
e

o
th

er
 w

ay
 a

ro
u

n
d

m
ai

n
ta

in
in

g
sp

ee
d

 in
 t

h
e

p
ro

ce
ss

u
se

 o
f b

es
t

p
ra

ct
ic

es
 in

 t
h

e
m

ar
ke

t
O

p
en

 d
at

a
st

ru
ct

u
re

 w
it

h
 a

h
ig

h
ly

 s
ec

u
re

 a
n

d

tr
an

sp
ar

en
t

ar
ch

it
ec

tu
re

 A
va

il
ab

il
it

y
9

9
%

,

Tr
an

sp
ar

an
t

w
h

at

is
 d

el
iv

er
t

b
y

w
h

o

D
at

a
is

 o
w

n
ed

 b
y

th
e

cr
ea

to
r

. W
it

h
 in

 t
h

e

p
la

tf
o

rm
 a

ll
 c

re
at

ed

d
at

a
ca

n
 b

e
u

se
d

R
eu

se
 if

 p
o

ss
ib

le
 e

xi
st

in
g

sy
st

em
s.

Th
e

fo
cu

se
s

is
 t

o
 c

re
at

e
re

u
sa

b
le

co
m

p
o

n
en

ts
 fo

r
fu

tu
re

d
u

p
li

ca
ti

o
n

 a
n

d
 s

ca
la

b
il

it
y

A
d

o
p

te
d

 s
o

lu
ti

o
n

s
m

u
st

fi
t

to
 t

h
e

re
q

u
ir

em
en

ts
 o

f

th
e

ar
ch

it
ec

tu
re

 in
 t

h
e

se
n

se
 t

h
at

 t
h

ey
 a

re
 o

p
en

an
d

 s
ca

la
b

le
 a

n
d

 v
ic

e-

ve
rs

a

M
ak

e
u

se
 o

f c
o

m
m

o
n

te
ch

n
o

lo
gy

 t
h

at
 is

av
ai

la
b

le
 in

 t
h

e
m

ar
ke

t

O
n

e
O

rg
an

is
at

io
n

 is
 t

h
e

fo
ca

l p
o

in
t

fr
o

m
 a

 o
p

er
at

io
n

al
 p

o
in

t.
 A

ll
 o

th
er

o
p

er
at

io
n

 a
ct

if
ti

es
 h

av
e

a
b

ac
k

to

b
ac

k
w

it
h

 t
h

e
fo

ca
l p

o
in

t.

su
cc

es
fu

l s
h

ar
in

g
o

f s
el

ec
te

d
 d

at
a

b
et

w
ee

n
 a

ll
 p

la
tf

o
rm

s
M

V
P

b
re

ak
-e

ve
n

 o
n

in
ve

st
m

en
t

M
in

im
u

m
 d

at
a

u
se

d

to
 g

iv
e

tr
u

st
w

o
rt

h
y

ad
vi

ce

sy
st

em
 s

u
p

p
o

rt
s

th
e

d
ef

in
ed

 u
se

-

ca
se

s

So
lu

ti
o

n
s

fi
t

th
e

lo
ca

l

co
n

te
xt

 (a
t

fi
rs

t
w

at
er

re
gi

o
n

s
o

f A
a

&
 M

aa
s

an
d

Te
ch

n
ic

al
 w

o
rk

in
g

p
la

tf
o

rm

H
el

p
 t

h
e

cl
ie

n
ts

 o
f t

h
e

p
la

tf
o

rm

w
it

h
 t

h
e

p
ro

m
is

ed
 s

er
vi

ce
s

C
re

at
e

th
e

go
-t

o
 p

la
tf

o
rm

 fo
r

ag
ri

cu
lt

u
ra

l s
ta

ke
h

o
ld

er
s

to
 p

ro
vi

d
e

tr
u

st
w

o
rt

h
y

ad
vi

ce
 b

as
ed

 o
n

 d
at

a
sh

ar
in

g
an

d
 a

n
al

ys
is

re
al

-t
im

e
ad

vi
ce

, p
re

d
ic

ti
ve

an
al

yt
ic

s
fo

r
a

m
u

ch
 la

rg
er

ta
rg

et
 a

u
d

ie
n

ce
 t

h
an

 fa
rm

er
s

p
ro

fi
ta

b
le

 a
n

d

ex
p

an
d

ab
le

b
u

si
n

es
s

w
it

h
 a

R
ic

h
 d

at
a

p
la

tf
o

rm

th
at

 e
n

ab
le

s

d
ev

el
o

p
m

en
t

o
f

d
u

p
li

ca
b

le
 s

ys
te

m
 -

al
lo

w

m
u

lt
ip

le
 d

at
a

so
u

rc
es

So
lu

ti
o

n
s

n
o

t
n

ec
es

sa
ri

ly

al
l d

ev
el

o
p

ed
 b

y

co
n

so
rt

iu
m

 c
an

 a
ls

o
 li

n
k

D
ev

el
o

p
m

en
t

st
re

et

co
n

ti
n

o
u

sl
y

w
o

rk
in

g
o

n

im
p

ro
ve

m
en

ts

Ex
ce

ed
 c

li
en

ts
' e

xp
ec

ta
ti

o
n

s
b

y

d
el

iv
er

in
g

th
e

ch
er

ry
 o

n
 t

o
p

Tr
u

st
w

o
rt

h
y

w
at

er
 u

se
 a

d
vi

ce
p

ro
je

ct
 is

 g
ro

u
n

d
b

re
ak

in
g

in

co
m

p
le

xi
ty

 a
n

d
 t

h
er

e
fo

re

cr
ea

te
 w

in
-w

in
-

w
in

 fo
r

G
w

tF
,

D
at

a
d

o
es

 n
o

t
h

av
e

ca
p

ab
il

it
ie

s.
 T

h
e

R
eu

se
 if

 p
o

ss
ib

le
 e

xi
st

in
g

sy
st

em
s.

Th
e

fo
cu

se
s

is
 t

o
 c

re
at

e
re

u
sa

b
le

So
lu

ti
o

n
s

ar
e

ca
p

ab
le

 o
f

p
re

ci
se

ly
 in

fo
rm

in
g

u
se

rs

Te
ch

n
o

lo
gy

 a
d

d
s

to
 t

h
e

ca
p

ab
il

it
y

o
f t

h
e

p
la

tf
o

rm

En
o

u
gh

 w
o

rk
fo

rc
e

to
 h

av
e

a

sm
o

o
th

 o
p

er
at

io
n

Th
e

p
la

tf
o

rm
 is

 s
u

ff
ic

ie
n

tl
y

se
cu

re
. S

ec
u

ri
ty

 n
ee

d
s

to
 b

e
p

ro
ve

n

w
it

h
 a

n
 IS

O
9

0
0

0
 c

er
ti

fi
ca

te

D
es

p
it

e
h

ig
h

 s
ec

u
ri

ty

st
an

d
ar

d
s,

 n
o

 im
p

ed
im

en
ts

o
n

 b
u

si
n

es
s

m
ak

e
cl

ea
r

h
o

w

ev
er

y

p
ar

ti
ci

p
at

in
g

p
ar

ty
 b

en
ef

it
s

sa
fe

gu
ar

d
in

g
d

at
a

co
m

p
li

an
cy

n
o

 u
n

in
te

n
d

ed
 d

at
a

u
sa

ge
So

lu
ti

o
n

s
ar

e
se

cu
re

 a
n

d

sh
ie

ld
ed

 a
ga

in
st

m
al

ic
io

u
s

at
ta

ck
s,

 b
u

t
d

o

n
o

t
d

ri
ve

 u
p

 c
o

st
s

D
es

p
it

e
h

ig
h

 s
ec

u
ri

ty

st
an

d
ar

d
s,

 n
o

im
p

ed
im

en
ts

 o
n

 b
u

si
n

es
s

A
ll

 w
o

rk
fo

rc
e

co
m

p
li

es
 t

o

le
gi

sl
at

io
n

D
u

tc
h

 le
gi

sl
at

io
n

C
o

m
p

li
an

t
an

d
 s

u
ff

ic
ie

n
tl

y

ad
ju

st
ab

le
 t

o
w

ar
d

s
fu

tu
re

ch
an

ge
s

in
 c

o
m

p
li

an
cy

re
gu

la
ti

o
n

St
ri

vi
n

g
fo

r

IS
O

9
0

0
0

 :
d

o

w
h

at
 y

o
u

 s
ay

 a
n

d

sa
y

w
h

at
 y

o
u

 d
o

G
D

P
R

C
o

m
p

li
an

t
an

d
 s

u
ff

ic
ie

n
tl

y

ad
ju

st
ab

le
 t

o
w

ar
d

s
fu

tu
re

ch
an

ge
s

in
 c

o
m

p
li

an
cy

 r
eg

u
la

ti
o

n

IS
O

 2
7

0
0

0
 fa

m
il

y
C

o
m

p
li

an
t,

 a
cc

o
rd

in
g

to

te
ch

n
ic

al
 in

d
u

st
ry

st
an

d
ar

d
s

IS
O

 9
0

0
0

 fa
m

il
y

A
ll

 in
d

iv
id

u
al

 a
p

p
li

ca
ti

o
n

s
in

 t
h

e
ap

p
li

ca
ti

o
n

 la
n

d
sc

ap
e

n
ee

d
 t

o

ad
re

ss
 t

h
e

C
SR

(S
u

st
ai

n
ab

il
it

y)
 fo

r
ir

ri
ga

ti
o

n
al

 p
u

rp
o

se
s.

A
p

p
li

ca
ti

o
n

 s
et

s
in

d
u

st
ry

st
an

d
ar

d
 in

 w
at

er
 ir

ri
ga

ti
o

n

m
an

ag
em

en
t

B
u

si
n

es
s

d
es

ir
es

 in

li
n

e
w

it
h

 a
p

p

d
ev

el
o

p
m

en
t

V
is

u
al

iz
at

io
n

h
ap

p
en

s
w

h
er

e

p
o

ss
ib

le
 o

n
 t

h
e

G
w

tF

p
la

tf
o

rm
 (n

o
t

o
n

 t
h

e

Sy
st

em
 s

u
p

p
o

rt
s

th
e

fu
n

ct
io

n
al

it
ie

s
o

f t
h

e
ap

p
li

ca
ti

o
n

s

in
 t

h
e

p
la

tf
o

rm

ap
p

li
ca

ti
o

n
 a

n
d

so
lu

ti
o

n
s

ad
d

 v
al

u
e

to

th
e

u
se

r
ex

p
er

ie
n

ce
 -

an
y

p
la

ce
, a

n
y

w
h

er
e,

 a
n

y

A
p

p
li

ca
ti

o
n

s
ar

e

d
ev

el
o

p
ed

 w
it

h
 t

h
e

la
te

st

tr
en

d
s

in
 a

p
p

d
ev

el
o

p
m

en
t

A
p

p
li

ca
ti

o
n

 w
o

rk
s

ac
co

rd
in

g
to

D
es

ig
n

 T
h

in
ki

n
g

P
ri

n
ci

p
le

s

W
e

w
il

l e
xc

lu
d

e
th

e
d

ev
el

o
p

m
en

t
o

f p
ro

p
ri

et
ar

y
p

ro
d

u
ct

s
P

ar
ty

 t
h

at
 m

ai
n

ta
in

s
an

d

fu
rt

h
er

 d
ev

el
o

p
s

th
e

p
la

tf
o

rm
 w

o
rk

s
vi

a
cl

o
u

d
-

b
as

ed
 p

ri
n

ci
p

le
s

Sh
o

rt
 li

n
es

b
et

w
ee

n
 p

ar
ti

es

D
at

a
is

 w
el

l-

co
n

ta
in

ed
,

ye
t

o
p

en
ly

 a
va

il
ab

le
 o

n

re
q

u
es

t

In
fr

as
tr

u
ct

u
re

 a
ll

o
w

s
fo

r
Io

T
o

r

o
th

er
 s

o
u

rc
es

 o
f d

at
a

In
fr

as
tr

u
ct

u
re

 s
er

ve
s

so
lu

ti
o

n
s

an
d

 is
 t

h
er

ef
o

re

ad
ju

st
ab

le
 t

o
 n

ew

se
rv

ic
es

In
fr

as
tr

u
ct

u
re

 is
 s

ca
la

b
le

Th

er
e'

s
a

cl
ea

r
ta

sk
 p

ac
ka

ge
 p

er

w
o

rk
fo

rc
e:

 R
A

C
I f

o
r

o
p

er
at

io
n

s
h

as

b
ee

n
 m

ad
e

P
ri

n
ci

p
le

s

A
p

p
li

ca
ti

o
n

In
fr

as
tr

u
ct

u
re

B
u

si
n

es
s

vi
ew

O
rg

an
iz

at
io

n
 s

tr
u

ct
u

re
 V

ie
w

Se
rv

ic
e

A
rc

h
it

ec
tu

re

M
in

im
al

 g
o

al
s

Fu
tu

re
 g

o
al

s

C
ap

ab
il

it
y

Se
cu

ri
ty

C
o

m
p

li
an

cy

 - 9 -

2.4 Architectural guidelines

2.4.1 The SOLID principle

SOLID is a set of 5 important architectural principles that were applied together when creating

the architecture and while developing the software:

Single Responsibility Principle

Each system capability (e.g. service/module/API) should have only one responsibility and as

such one reason to change. Keeping the responsibilities as narrow as possible means that the

users know of the intended purpose, which leads to less errors.

Open-Closed Principle

This principle postulates that it is preferable to extend a system behaviour, without modifying it.

Although it is often not a good idea to try to anticipate changes in requirements ahead of time (as

it can lead to over-complex designs), being able to adapt new functionality with minimum

changes to existing components is key to the application’s longevity.

Liskov Substitution Principle

In Software Development, this means that derived classes must be substitutable for their base

classes, but this principle’s resemblance with Bertrand Meyer’s Design by Contract is how it can

be applied to Distributed Architecture: two services communicate effectively and repeatedly

when there is a common ‘contract’ between them, which defines the inputs/outputs, their

structure and their constraints. Therefore: given two distributed components with the same

contract, one should be replaceable with other component with the same contract without altering

the correctness of the system.

Interface Segregation Principle

Interfaces/contracts must be as fine grained as possible and client specific, so calling clients do

not depend on functionality they don’t use. This goes hand in hand with the Single

Responsibility principle: by breaking down interfaces, we favour Composition by separating by

https://en.wikipedia.org/wiki/Design_by_contract

 - 10 -

roles/responsibilities, and Decoupling by not coupling derivative modules with unneeded

responsibilities.

Dependency Inversion Principle

High level modules should not depend on low level ones; they should both depend on

abstractions. Likewise, abstractions should not depend on details, but details should depend on

abstractions. As such this principle introduces an interface abstraction between higher-level and

lower-level software components or layers to remove the dependencies between them.

2.4.2 Reuse

Always aim to identify existing proven solution over developing from scratch and re-inventing

the wheel. Prefer open-source solutions developed by the community, and solutions that are

widely used in the industry to get a high level of support and maintenance.

Try to avoid or reduce lock-in to frameworks and libraries, especially commercial ones.

2.4.3 Reactive Programming

A complementary principle being applied is Reactive Programming. This is a relatively new

term defined as: an architectural style that enables applications composed of multiple

microservices working together as a single unit to better react to their surroundings and one

another, manifesting in greater elasticity when dealing with ever-changing workload demands

and resiliency when components fail. More about reactive programming and reactive system in

the Reactive Manifesto website.

https://www.reactivemanifesto.org/

 - 11 -

3 High-level architecture

3.1 Grow with the Flow architecture

The architecture is composed of several components:

1. Modelling Platform – the modelling platform collects data from various sources and

maintains models about groundwater flow and crop growth. The models are deployed in

each water authority. The modelling is built on the Delft-FEWS (a.k.a. FEWS) platform

developed by Deltares.

2. GWTF Platform – the platform is responsible to

a. collect data from the Modelling platform, ground truth from farmers, and data

from other sources (like KNMI)

b. store and process the data

c. provide a unified API to access and provide data, for use by applications built for

farmers, waterboard managers, and other stakeholders.

3. GWTF App – the official application built for the main stakeholders, mainly the farmers

and waterboard managers. It provides a visualization using graphs, maps and data tables.

It also provides the means to collect ground truth data from the user.

4. Corporate business systems – systems developed by corporations like insurance and food

processors can integrate with the GWTF Platform API in order to collect data about plots

and crops.

https://www.deltares.nl/en/software/flood-forecasting-system-delft-fews-2/
https://www.deltares.nl/

 - 12 -

Figure 1: GWTF overall architecture

As mentioned above, the Modelling platform is responsible to maintain models that are the main

source of data for the GWTF platform. There are two types of models in the Modelling platform:

1. Regional model – the model produces daily grids of variables over the modelled

geographical area. In each day there are grids of a few days in the past and a few days of

future forecast. See section 4.2.1.3 for more information about the structure of the model

output.

In addition to the grids, there is also an output per farmer plot. The Modelling platform is

fed with the BRP data, which contains coordinates of each parcel (plot) owned by

farmers in the Netherlands. The coordinates are overlayed on the grid, and the average of

each variable is calculated per plot. The results are also provided daily, with past and

forecast data.

 - 13 -

Figure 2: Overlaying plot coordinates over a grid

2. Local model – the local model aims to provide a more accurate forecast at the plot level,

than the regional model. It uses World Food Studies (WOFOST) to simulate crop growth

and produces a subset of the variables provided by the regional model. The local model

takes as input ground truth information from the GWTF platform (information collected

from farmers: irrigation amounts and crop development stage). This information is fed

back into WOFOST and helps making the model more accurate going forward.

3.2 Grow with the Flow Platform architecture

The GWTF Platform has an architecture blueprint, with four main components:

1. Ingestion – responsible for the data coming into the system from external sources

2. Storage & Processing – responsible for processing incoming data and storing it

3. Exposure – responsible for providing data to external consumers

4. Data Governance – responsible for controlling the data in the system, ensuring it’s

security, integrity, and lifecycle.

https://www.wur.nl/en/Research-Results/Research-Institutes/Environmental-Research/Facilities-Tools/Software-models-and-databases/WOFOST.htm#:~:text=WOFOST%20(WOrld%20FOod%20STudies)%20is,production%20of%20annual%20field%20crops.&text=With%20WOFOST,%20you%20can%20calculate,management%20(e.g.%20sowing%20date).

 - 14 -

Figure 3: The GWTF Platform Architecture

The blueprint is the high-level plan used to design and develop the GWTF platform.

Not all parts of the blueprint are currently implemented. Some components were given lower

priority than others because they were not needed in the existing use cases and only needed for

the longer term.

The following sections go into further detail of each component and indicates the status of

development.

3.2.1 Batch Ingestion

Purpose: a pipe that retrieves or receives data from a

data source in bulk, prior to passing it on to further

processing. The whole batch (usually that would be a

data of a single day or some other fixed time) is

downloaded and only then is processed and stored.

Should be used: when the data source provides data in

batches, and when real-time processing is not critical.

Data Source

GWTF Platform Store and Process GWTF
Platform
Delivery

Standardization Rules Data lifecycle Data Catalog

Data Quality Communication

Data Security

Data Governance

Platform Automation
Platform Management & Operations

Infrastructure and Connectivity

Use case
1

Use case
2

Exposure

Batch

Batch pull

Batch push

Data API

Stream

Stream Subscribe

Stream E-2-E

Batch

Ingestion

Batch pull

Batch push

Data API

Stream

Stream Subscribe

Stream E-2-E

S

Enterprise Zone

Drop Zone

Archive Zone

Test Zone

Storage & Processing

Unsaturated
groundwater
flow model

Research

Saturated
groundwater
flow model

Crop model

KNMI

Farmers

Satellites

Other Source

Unsaturated
groundwater
flow model

Saturated
groundwater
flow model

Crop model

Compliancy and legislation
Security

A
u
t
o
r
i
s
a
t
i
o
n

A
u
t
o
r
i
s
a
t
i
o
n

 - 15 -

Examples:

• KNMI data is in CSV format, can be retrieved in one batch per day or per hour for

multiple weather stations at once (batch pull)

• Irrigation data provided by farmers is ingested by the system via push.

How:

1. Pull

• For each pulled data source there is a schedule for retrieval

• A scheduler handles the timings

• Retrieved data is passed to the Storage & Processing component

2. Push

• An HTTP endpoint is set to receive the data, optionally with additional metadata

• Received data is passed to the Storage & Processing component upon retrieval

Status: Complete for the existing data sources

3.2.2 Stream Ingestion

Purpose: a pipe that retrieves or receives data from a

data source in a continuous form (streaming), while

passing it on to further processing

Should be used: when the data source provides data

as a continuous stream and real-time processing is

important.

Examples:

Currently there is no such data source in use, but one can think of a data stream such as one

coming from real-time sensors

How:

 - 16 -

The GWTF platform software stack already has support for streaming. The platform can use

HTTP streaming, HTTP Long Polling and WebSockets in order to implement both streaming

pull and push. The actual method would depend largely on the data source.

Status: Not implemented. The software stack used for developing GWTF supports streaming,

however the existing data sources to be ingested do not require/need streaming.

3.2.3 Store and Process

Purpose: perform all necessary processing on raw data,

which includes parsing or transforming to different formats

and composing computed variables. Then index and store the

data for later use or online retrieval

Examples:

• Input from the modelling platform, in NetCDF format is parsed. The input is processed

for computing additional variables and transforming units. Finally, the data is stored in

the database.

Status: Implemented for the existing variables and data currently ingested.

Adding new variables usually won’t require additional development unless format or data types

are very much different, or unless there’s any specialized algorithms needed to be applied.

3.2.4 Batch Exposure

Purpose: a pipe that sends data from the processing component to an external party, which may

be the modelling platform, the GWTF Farmers’ app or other 3rd party apps or consumers. The

data is sent in batches, where the consumer needs to wait for each batch to arrive before

processing it.

 - 17 -

Should be used: when the data to be exposed is

relatively small1 or can be broken into smaller chunks.

Examples:

• Exposing the list of plots that the user is

authorized to view. The response is a JSON

array containing each plot as a JSON object.

How:

1. Pull

The platform has a RESTful API that provides data in JSON format, which authorized

clients may access.

When data becomes too large to be fetched in one batch, it is sometimes possible to

provide multiple batches by providing additional parameters to the request. E.g.,

page=5&pageSize=10 would split the response into pages of 10 results each, and

would return results 40-49

2. Push

Pushing out batch data can be accomplished using the Pub/Sub pattern, in which a client

would subscribe to get data, provide an endpoint as part of the subscription, and the

platform would push data by calling that endpoint. In a similar way as with Batch Pull, it

is possible to split large results into smaller ones.

Status: Batch Pull is implemented for all RESTful APIs.

Batch Push is currently not implemented because there’s currently no use-case for it.

1 Small enough that the consumer can afford to wait for it and has enough resources to hold it in memory or disk in

entirety.

 - 18 -

3.2.5 Streaming Exposure

Purpose: a pipe that sends out data from the GWTF

platform to external parties in a continuous form

(streaming).

Should be used: when the the information is ongoing or

changing rapidly, or when the data is very large and can be

processed by the client in a stream (in other words,

the client doesn’t need all the information as one block)

Examples:

Currently there is no such data source in use, but one can think of a data stream that indicates the

status of a large number of sensors in real time, possibly augmented with computation results

done by the platform

Status:

Currently this is not implemented, but the software stack supports streaming when needed.

3.2.6 Data Governance

Purpose: Data Governance is a large topic and means different

things to different people and different projects. We define it as the

means to centralize the data in the organization and enforce a

common set of data types, rules and quality such that the data has a

uniform meaning across the organization and is easier to manage

and maintain.

We view the platform’s data governance as one that should ultimately include at least

the following:

 - 19 -

• Data Security – ensuring the data is encrypted and therefore safer against attacks

on physical servers

• Communication/Interface management – planning communication protocols and

data formats between the interfaces

• Data Catalog – a database of metadata, describes the data within the platform, and

allows parties to discover what data is available, which properties and data types it has

• Data Quality – keeps track of metadata about last update times of each data source,

define criteria for quality, alert when data isn’t up-to-date, or is of low quality, etc.

• Data lifecycle – metadata about stage of each data element in the processing &

storage, e.g., does it need to be processed, stored, archived, deleted, etc.

• Standardization Rules – a set of customizable rules for enforcing organizational standards

of data (e.g., validation, formats, business rules, security rules)

Status:

Some of the building blocks are already available:

Figure 4: Status of Data Governance components in GWTF Platform

• Data security is implemented via the storage platform (MongoDB2)

• Communication is implemented via Akka HTTP3 (for RESTful services) and Ngnix4

The remaining building blocks are not available or partially available, meaning the technology is

in place but there need to be some additional steps for integration and/or development, as can be

seen in Figure 4.

2 MongoDB is described in section 4.1.2
3 Akka HTTP is described in sections 4.2.2 and 4.3.14.2.2
4 Ngnix is described in section 5.1

 - 20 -

3.2.7 General activities

In addition to the above components, the blueprint has a set

of components whose responsibilities evolve around the

operation and management of the platform.

This includes the following:

• Authentication and authorization

• Platform automation – automating operations and

tasks, automatically ensuring the system can scale

up or down based on level of use

• Management and Operation – the responsibility of day-to-day support and management,

maintaining interfaces with data sources, status page for users

• Compliance and legislation – auditing & monitoring based on compliance and legislation

requirements (e.g. GDPR)

• Infrastructure and connectivity – the infrastructure on which the platform is running on

(e.g. Google Cloud, AWS, Azure)

• Security – maintaining and monitoring security requirements, developing procedures and

periodic security tests

Status:

• Authentication and Authorization

Implemented using an open-source platform (Keycloak).

• Infrastructure and connectivity

Currently using Google Cloud Platform

• Platform automation – components in the architecture are deployed in

Docker components, which make it easy to transition to automation

• Compliance, Legislation and security

Google Cloud Platform already has partial built-in support for these aspects, but more

work needs to be done to customize and adapt to the GWTF platform

 - 21 -

3.3 The relation to Spatiotemporal Agribusiness Framework (SAF)

platform

The Spatiotemporal Agribusiness Framework (SAF) is a framework developed by Milan

Innovincy B.V. for collecting and processing Geo-based and time-series data related to the

agriculture domain. It is designed to support Big data geo datasets, support for various crop

models and machine-learning models with batch and stream processing.

The GWTF platform was designed with a similar architecture as the SAF, while reusing

several infrastructure libraries and components for:

• Data Ingestion

• Processing pixel and plot-based data

• Data Exposure

• Storage

• Authentication and authorization

• Platform automation

• Common data types: geographic entities, domain entities (e.g., plots, famers)

https://m-innovincy.com/
https://m-innovincy.com/

 - 22 -

4 GWTF Platform Architecture in detail

4.1 Data and Storage

4.1.1 Data stored in the system

The GWTF platform currently stores three main types of data:

1. Plot analytics – time series variables about plots (e.g., precipitation, soil moisture, water

stress). This includes both calculated data and feedback from users (currently irrigation

amounts and crop status).

2. Pixel analytics – time series variables applied to a geographical grid (similar variables as

for the plots)

3. Non-temporal data – information that relates to the analytical data. Currently it is only the

collections of users and plots.

The full list of variables of the plot/pixel data can be found in the Appendix 6.1

4.1.2 Storage

Data in the platform is stored in a database called MongoDB. MongoDB is a document database,

and as such is a NoSQL database. In other words, data is not stored in relational tables as with

traditional SQL databases.

Instead, in MongoDB the data is organized in a hierarchical structure, with a flexible schema.

In MongoDB the equivalent of a table row is a document, which in itself may contain multiple

fields. Documents are organized in collections, which are similar to relational tables in concept.

Unlike relational databases, documents can be nested to contain embedded documents, and fields

are not limited to a specific set.

https://www.mongodb.com/
https://en.wikipedia.org/wiki/Document-oriented_database

 - 23 -

Figure 5: Concepts of RDBMS vs MongoDB

There are several advantages when using MongoDB for this platform:

• Flexible schema – the fact that documents do not adhere to a specific schema is an asset

when handling real-world data, as well as in handling changes in requirements.

• Scalability – MongoDB is designed for easy horizontal scale up, with built-in sharding

and real-time replication.

• Native Geo-location support – GIS data (like points, lines and polygons) can be stored

semantically within documents and indexed, so Geo-based queries can be made natively

and fast (e.g., one can query all documents that have points contained within a given

polygon or query all documents that have points within a given distance to a given point).

• GridFS – MongoDB has a feature called GridFS (Grid File System) that makes it fast and

easy to store large binary files. GridFS is currently used to store the pixel data.

4.2 Data Flows

4.2.1 From FEWS to the GWTF Platform

4.2.1.1 Operation scripts

 - 24 -

FEWS exports model output nightly in the form of NetCDF files, which are placed in an FTP

server. Each waterboard’s data is put in a different directory.

The GWTF platform has an ingest command that can ingest that data for a particular date (or

range of dates) and a particular waterboard (or a collection of waterboards).

The command parameters are:

--date A date for which to ingest.

--date-range A range of dates for which to ingest (colon delimited)

--waterboards One or more waterboard names to ingest (comma delimited)

When running with –date, one can provide an absolute date in the format of YYYY-MM-DD or

a relative date, e.g., -3 (which means “three days ago”).

There are two scripts available in the production server (also available in the project source code

repository), to make it easier to run the ingestion manually when needed:

run-ingest.sh <date> <waterbards>

Runs the ingestion for a particular date and waterboards

run-ingest-range.sh <from-date> <to-date>

Runs the ingestion for the given date range for Aa en Maas and Vallei en Veluwe (currently hard

coded within the script).

Running the ingestion manually is useful for various cases, such as re-running the process or

troubleshooting, but more important is the requirement to run it automatically every night.

For this purpose, we use https://systemd.io which is a modern suite of tools for Linux systems,

that can do scheduling and is a more contemporary replacement of the Linux cron scheduler.

The production machine has a 24ystem service that is configured to call

run-ingest.sh -1 AaenMaas,ValleienVeluwe

https://systemd.io/

 - 25 -

every night (currently at 2am UTC).

The ingest command, regardless of the parameters passed to it, starts a new process that performs

the ingestion, processing, and storage in the database. This process will be further detailed in

following sections.

4.2.1.2 FTP structure

As mentioned before, the data from FEWS reside in an FTP server.

The directories and files’ structure are as follows:

An FTP server may contain data from more than one waterboard. Under the root there is a

directory for each waterboard.

The dataset for each waterboard is placed in that directory in a flat structure. The intention is to

keep this as a temporary location until it is processed by the platform, and periodically delete

older files over time. This is done by the modeling platform, outside the scope of the GWTF

platform.

 - 26 -

In general, the naming convention of each file is:

<timestamp>_<model>_<RWA>_<variable>_<type>.nc

Where:

timestamp – the analysis date-time, i.e., the timestamp in which the model performed the

analysis. The format is YYYYMMDDHHMM

Model – can be either fews (for the regional model) or swap (for the local model).

RWA – the regional water authority (a.k.a. waterboard)

Variable – the variable that is described in the file. E.g., P_Input describes precipitation, and

Etact describes the actual evapotranspiration.

Type – can be either:

1. scalar – data about individual plots (i.e., single value for each plot ID)

2. grid – the geographical location of the RWA is divided into a grid. Data is provided per

pixel in the grid.

Currently the ingest command can only fetch data from a single FTP server, but this can be

enhanced once there’s a need for multiple servers, by adding another set of parameters to this

command.

Side note: Pros and cons of using FTP as the form of data transfer between the model and

GWTF Platform

Using FTP as the form to transfer data between the platforms was chosen because it was a

native way for the modeling team to export data and was therefore the quickest way to

start up.

However, there are some disadvantages in using FTP for this purpose:

 - 27 -

1. It is less resilient and robust than some of the modern API protocols

2. It is more difficult to communicate meta-data (need to use file name conventions)

3. FTP is not optimal for such use cases. E.g.: a difficult to understand issue occurred

when the FTP server and client were on different time zones, and due to a

daylight-saving clock change, dates on the FTP server were not able to be

recognized by the FTP client, and the transfer failed.

4. There is currently no easy way for the GWTF platform to signal to the modeling

team that a file has been ingested and processed, and therefore can be deleted from

the FTP.

5. Entire files need to be downloaded prior to processing, whereas with an API

processing can potentially be streamed and processed more efficiently.

An alternative to FTP can be RESTful APIs over HTTP, which provide more flexibility,

robustness and efficiency.

Note: In the opposite direction (where GWTF platform provides data to the local model),

data is already transferred via a RESTful API.

4.2.1.3 NetCDF File structure

Each NetCDF file generated by the modeling platform contains a time dimension that may span

over multiple dates, both historical data (past dates) and forecast data (future dates).

As previously mentioned, there are two types of NetCDF files (Scalar and Grid), each has a

slightly different structure.

Scalar files

Scalar files contain data of a single model variable about multiple plots over time. Typically, one

file will contain data for all plots of all registered users of a single Regional Water Authority

(RWA). However, the processing algorithm is designed to handle multiple scalar files per

variable and RWA, in case a single file becomes too large for processing.

 - 28 -

Figure 6: Scalar file structure

The structure of the file can be viewed as a 2.5 dimensions cube, with: time, plot ID and 2

variables for each: historical and forecast. E.g., for precipitation, the file would contain a

P_Input__historical variable and P_Input_forecast variables. The file contains two values (both

historical and forecast) for each timestamp and plot ID. However, there is a valid value in

P_Input_historical only for timestamps lower than the analysis time (also provided as a variable

in the file). Likewise there is a valid value in P_Input_forecast only for timestamps higher or

equal to the analysis time.

 - 29 -

Grid files

Grid files contain similar data as the scalar files, but the data is related to each pixel in the grid

rather than a plot. Grids span over a geographical area, where each cell has a fixed size.

The structure of the file has 3.5 dimensions: time, longitude, latitude, and then historical and

forecast variables for each 3-dimensional cell – similar as the way it is structured in the scalar

files. Grid files also have an analysis_time variable to indicate when it was generated, and what

is the boundary of historical vs. forecast data.

 - 30 -

 - 31 -

4.2.1.4 Ingestion

The method used for ingestion is Batch Pull. That’s due to the nature of the FTP protocol.

Pull – because the GWTF platform is a client of the FTP server.

Batch – because the FTP serves distinct files that can be downloaded on demand (in our case,

daily).

As previously mentioned, the ingestion command receives a list of waterboards and a date or a

range of dates as input.

Then for each waterboard, the ingest command then requests the list of all files under the

waterboard’s directory. It then filters the list of files based on the date or range of dates in the

input.

The files that pass the filter are downloaded from the FTP server to a temporary directory on a

disk of the GWTF platform’s ingest service.

Each of these files that are downloaded are then passed on for processing.

4.2.1.5 Processing the plot data (Scalar type files)

As described in previous sections, for each waterboard and analysis time there is a set of scalar

files, each file describes a different variable.

For example, for analysis time of 2021-01-01 in the Aa en Maas waterboard, these would be all

files of the form

202101010000_fews_aaenmaas_<VarName>_scalar.nc

All the files of that form are collected, parsed, and converted into a structure of the form:

Table[PlotId, Table[Timestamp, Table[VarName, Value]]]

Where Table[K,V] is a data structure that maps unique keys K to a value V.

 - 32 -

Following that some validations are made to ensure that the data is indeed consistent as expected,

e.g., that all the files in that dataset contain the same analysis time. When that is not the case, it is

difficult to reason what is historic vs. forecast data and processing will stop with an error.

Then this structure is converted into a collection of PlotAnalytics objects, which has the

following schema:

Name Data type

_id ObjectId

Timestamp Long

isForecast Boolean

Waterboard String

localPlotId String

attributeValues

Name1 Value1

Name2 Value2

… …

analysisDate ISODate

updatedAt ISODate

These objects are stored in the database with an upsert operation. “Upsert” is a combination of

insert and update, meaning – the object is inserted if it doesn’t exist, or updated if it already

exists. “Existance” is determined based on some key, either the unique ID of the object or some

other attribute (or combination of attributes). The benefit of upsert is that it can be performed in a

single database operation.

A PlotAnalytics object exists in the database if there’s already a document with the same

timestamp and plot ID. This should be intuitive, given that a single plot cannot have more than

one analytics object in each point in time.

 - 33 -

In other words, using this mechanism the GWTF platform ensures that in case the Modeling

Platform outputs more accurate data for a given plot on a later date, the platform will store and

expose the most recent data. The way it works is depicted in the diagram below.

For simplicity of the diagram we will assume that the NetCDF files contain only 4 days of data.

On Day 1, the platform gets the first 4 days from the Modeling Platform of a plot P1. All of them

are inserted since the database didn’t previously have any data about Day 1 through 4 for P1.

On Day 2, the platform gets the data about day 2, 3, 4 and 5. Days 2 – 4 already exist and so they

are updated. In practice, Day 2 and 4 contain the same data as it was received on the previous

day, so effectively nothing happens. Day 3 is different in some values, and the latest data is

stored. Day 5 is new, so it is inserted.

Note that the attribute values are stored as-is, without any transformations. Transformations such

as unit conversions are applied upon request of those variables by the API.

4.2.1.6 Processing the grid data

Unlike plot analytics, which are stored in a document per plot and timestamp, grids are

significantly larger and therefore stored as grid files with only the metadata stored in MongoDB

documents that are used for performing queries.

Day 1

Day 2

Analysis Time

Day 1 Day 2 Day 3 Day 4 Day 5 Data time

Figure 7: insertion and update of plot analytics

 - 34 -

The mechanism for storing the files is by GridFS, a feature in MongoDB which is a way to store

large datasets.

With GridFS, each file being stored is like a single BLOB that you can write or read, but there’s

also a regular MongoDB document that is linked to it, where one can store any type of metadata.

That metadata is used for queries. With this mechanism you can make a single query and retrieve

all the BLOBs at once.

More information about GridFS can be found here.

We store the following meta data for each grid file:

• waterAuthority – the RWA for which this grid is related.

• analysisDate – the date in which the data was analyzed by the Modeling Platform

• date – the date for which this grid relates to

• isForecast – whether this grid contains historic data or a forecast

• attribute – what variable this grid is describing (e.g., P_Input, DVS)

• boundingBox – the WGS-84 coordinates of the rectangle in which this grid is located

• dimensions – the dimensions of this grid as a pair: [width, height]

The figure below shows an example of the metadata linked to one of the grids.

https://docs.mongodb.com/manual/core/gridfs/

 - 35 -

Figure 8: JSON representation of a MongoDB document that contains the metadata of one grid file. The grid file contains the

Trel attribute for Vallei en Veluwe, on 30th April 2021, as analyzed on 2nd May 2021

The rest of the attributes that can be seen in Figure 8 (namely _id, chunkSize, length,

uploadDate, filename, contentType and md5) are automatically maintained by MongoDB.

The grid itself goes through two types of transformations:

1. Value transformations

a. Models may expose a special “empty” value, which means that there is no actual

value available. In FEWS, this value is typically -999.0. The first transformation

 - 36 -

in the GWTF platform converts this value to zero. Meaning, if the model cannot

provide for some reason an actual value, the app will show 0.

Note that there is room for improvement here, in which the platform will also

represent “empty” values in some way (either leave the -999.0 or use some other

more generic representation supported by the database, such as NaN or null).

Clients of the GWTF platform could then visualize such values differently (say,

with dotted lines in graphs or a different color).

b. Each value in each cell is converted to the default unit as desired in the GWTF

app. For example, the water deficit Ssdtot, is converted from millimeters to

meters. To facilitate this, the GWTF platform has a catalog that lists all model

parameters. The complete list of parameters and their units in the model vs. the

unit in the app can be found in the appendix 6.1

c. All negative values are converted to 0.

2. Coordinates Transformation – The bounding box of the grid is converted into WGS-84

so that it is correctly displayed in mapping software.

3. JSON transformation – the grid is then transformed into standard JSON array format.

This is done because JSON is a standard de-facto web format, which is the most

convenient for use by the app. In this way, the API retrieves the file and serves it as-is,

without further need of processing.

Figure 7: insertion and update of plot analytics

These transformations are done at the processing stage for convenience, because the API can

then simply stream the files directly in the response without parsing the file, and without

applying further processing upon request.

The disadvantage of this approach is that some transformations cannot be reversed (1a and 1c) so

the raw data is lost.

 - 37 -

A future improvement could be to move those transformations to the API level (as it is done with

the plot analytics), which will ensure allow for more flexibility. However, for the current stage it

is not a priority.

Following the transformations, the grid (in JSON format) is then stored as a file in GridFS (one

file for each waterboard, date and parameter), together with the meta-data.

Similar to the plot analytics, the file is inserted if no file already exists for that

waterboard/date/parameter, or replaces any existing one (see Figure 7: insertion and update of

plot analytics)

4.2.1.7 Processing the local model

The local model contains data about plots only, and the file structure is exactly the same as the

regional model’s scalar files.

Unlike the regional model, the local model doesn’t have one file per day per variable, but rather

there is a file per variable, and data is accumulated in each file for the entire timeline, starting 1st

January 2021, until the analysis time + forecast period. Each day the same files are re-written

with updated results and an additional day of forecast

Therefore, the ingestion command is the same as with the regional model, but with different

parameters:

• The FTP root directory is /FromLocalmodelToApp

• The date: 2021-01-01, rather than -1 (“yesterday”) as with the regional model.

Consequently, with the local model the GWTF platform reads and updates the results starting

from 1st January 2021.

4.2.1.8 Orchestration of the ingestion

The automation is run by 37ystem.io, as explained above. It runs both the regional and local

model ingestion serially.

The daily ingest runs the regional ingest at first, and only then the local model ingest. This way

the local model results (which should be more accurate) override the regional plot-level model

results.

 - 38 -

4.2.2 The GWTF Platform API

The API of the platform is the way in which it exposes data to clients, as well as a one of the

ways to ingest data from clients. Clients can be the GWTF application, as well as other

application or external parties.

Because the ingestion from the Modeling platform is currently based on FTP and not a RESTful

API, this section doesn’t cover that here (see section 4.2.1.4).

Technically, the API is deployed as a service called webapi which implements all API endpoints

currently available (both of ingestion and exposure). To implement this, Webapi uses an open-

source software library called Akka HTTP which makes it extremely easy to build HTTP request

handlers (called Routers). Akka HTTP handles all the parsing and intricates of the HTTP

protocol, giving the developer the freedom to focus on the business logic. It provides support for

virtually all HTTP protocol features, as well as handling RESTful API payloads in JSON format

(as well as other formats).

Standardization
Rules

Data lifecycle Data Catalog

Data Quality Communication

Data Security

Data Governance

Platform Automation
Platform Management & Operations

Infrastructure and Connectivity

Exposure

Batch

Batch pull

Batch push

Data API

Stream

Stream Subscribe

Stream E-2-E

Batch

Ingestion

Batch pull

Batch push

Data API

Stream

Stream Subscribe

Stream E-2-E

Compliancy and legislation
Security

A
u
t
o
r
i
s
a
t
i
o
n

A
u
t
o
r
i
s
a
t
i
o
n

S

Enterprise Zone

Drop Zone

Archive Zone

Test Zone

Figure 9: The API within the platform's architecture.

The API is used for Ingestion and Exposure

 - 39 -

The HTTP request handling is done based on the URL and method of the request (GET, POST,

DELETE, and PUT) . Webapi has a root router which gets all HTTP requests 

The HTTP request is expected to bear a header containing an encrypted authorization key. This

key is verified in the KeyCloak service 

If the key is invalid or expired, then the API response is 401 (Unauthorized) – which instructs

the user of the API to get a new authorization token.

If the key is valid, then KeyCloak provides the root router with the identity of the API caller.

The root router then forwards the request to a service router  based on the URL prefix. E.g., if

the URL starts with /plots then the request is forwarded to the “plots” router. The plots router in

turn, knows how to handle the specific request, based on the HTTP method and URL. It then

activates the relevant business logic within the respective module, and data access layer  in

order to retrieve the relevant data.

For example, if the request was GET /plots, then the plots router will simply request the list of

plots that the authenticated user is allowed to receive.

Whatever the result of the API call might be, it is passed back to calling router, which is

responsible to transform it to the format required by the API (in most cases, JSON). For more

information about the API specification see 6.2.

In
te

rn
et

Akka HTTP

Webapi Service

Root Router

Plot Analytics

Module

Pixels Module

Plots Module

Feedback

Module

Request

Response








Database





KeyCloak Service

(Identity Management)



Plots Router Plot Analytics Router

Pixels Router Plot Feedback Router

Data Access Layer

(Identity Management)



Figure 10: Data flow of the API

 - 40 -

That response payload is passed back to the root router, and then to Akka HTTP  which

responds in standard HTTP protocol 

This separation of a root router, multiple modules and a router for each module makes it easier to

decouple different services and modules from each other. As the platform grows over time, we

may decouple the modules even further using more granular modules or possibly with

microservices.

4.2.2.1 GET requests

The following APIs are relatively simple GET requests:

• /me – Gets the user information of the authenticated user (name, waterboard, user type)

• /plots – Gets the list of plots visible to the authenticated user

• /plot-analytics – Gets model information about the plots of the authenticated user, over a

given time range

• /pixels – Gets grid-level data for the waterboard of the authenticated user

4.2.2.2 Farmer feedback

The purpose of the feedback API is to make it possible to receive information from farmers

(namely, ground truth) that can help calibrate the models.

The feedback API has PUT methods, in order to send information from clients to the platform,

and GET methods, so that clients can check what was previously sent. GWTF platform serves as

the single source of truth of farmer feedback, and clients are not required to store this

information permanently).

Currently there are two types of information that can be collected from farmers:

• Irrigation data – how much water was irrigated (in millimeters) on a specific date in a

particular plot. The irrigation amount can be any positive integer. There is currently no

validation on the platform side to ensure that the value is not too large or small.

 - 41 -

• Crop status – what is the development stage of the crop growing on a particular plot. The

API accepts a string value for the status, and there is currently no validation or check that

on the platform side that the value is a valid status, or that it matches the crop type being

grown on that plot. It is therefore currently up to the client-side to validate and ensure the

correctness of these values.

Irrigation data

Storing and receiving the irrigation data is straightforward.

The PUT API gets the plot ID, the irrigation date and the amount, and stores it in the database in

the following schema in the plot_feedback collection:

Name Data type Description

_id ObjectId The unique ID of the entry

type String A discriminator field for the type of feedback. Holds

“irrigation”

plotId ObjectId Refers to the plot in the GWTF platform database

date ISODate The date in which the plot was irrigated

irrigationMM Int32 The amount irrigated

updatedAt ISODate The date in which this entry was created by the user

updatingUser String The username that created this entry

The GET API gets a range of dates as input parameters. It returns all the irrigation records that

are stored in the database, for all the plots of the authenticated user, within the given date range.

The API also has two additional and optional parameters:

1. waterboard – if the authenticated user has access to more than one waterboard, providing

this parameter will limit the results to plots within the given waterboard. The local model

uses this API to retrieve irrigation data for each waterboard at a time.

2. withLastUpdateBeforeStartOfRange – if this parameter is true, then the result will

include the last irrigation entry whose date is before the given date range (if such exists).

 - 42 -

This result is placed as the first one in the list. The GWTF application uses this

information to indicate when was the last time a plot’s irrigation data was updated.

Crop status

The PUT operation for crop status is very similar to that of irrigation.

The API gets the plot ID, the date for which the new status is applicable. For example, if the

farmer noticed that germination first happened on April 3rd – this would be the date (even if the

actual feedback was received on, say, April 10th.)

This data is stored in the database in the following schema, in the plot_feedback collection:

time

Irrigation Data Entry for one plot on a single date

Date Range of request

Entries in the

Database

Entries in the Response

withLastUpdateBeforeStart=true

Figure 11: Irrigation data GET API

Entries in the Response

withLastUpdateBeforeStart=false

 - 43 -

Name Data type Description

_id ObjectId The unique ID of the entry

Type String A discriminator field for the type of feedback. Holds

“crop-status”

plotId ObjectId Refers to the plot in the GWTF platform database

Date ISODate The date in which the plot was irrigated

cropStatus String The crop status

updatedAt ISODate The date in which this entry was created by the user

updatingUser String The username that created this entry

The GET API also works quite similarly to irrigation data. It requires a range of dates as input,

and has two optional parameters: waterboard and withLastUpdateBeforeStartOfRange. The

functionality and implementation is the same as with irrigation.

4.2.3 API documentation

The API is likely to evolve and change over time, probably faster than this document. The API

documentation was developed in Swagger (an online collaboration tool and language for

RESTful APIs). For the latest version see 6.2

4.3 Software, Open-source software and libraries

The GWTF platform is written in the Scala language and compiled into standard Java Virtual

Machine (JVM) bytecode.

There are several open-source software libraries currently being used, detailed below.

 - 44 -

4.3.1 Akka

Akka (https://akka.io) is a toolkit for building highly concurrent, distributed, and resilient

message-driven applications for Java and Scala.

On top of the core Akka library there is Akka HTTP, which is used by the platform to implement

the RESTful API (see 4.2.2 – The GWTF Platform API)

Akka is well-proven in production, and used by several well-known companies such as PayPal,

LinkedIn, Shopify, and Tesla.

Current version used:

Akka 2.6

Akka HTTP 10.2

4.3.2 GeoTools

GeoTools (https://www.geotools.org) is an open-source Java library that provides a wide range

of tools for geospatial data. Some notable examples are:

• Reading/writing GIS data in many file formats and spatial databases

• Performing operations on topological shapes, such as filtering, intersecting, and unifying.

• Applying shapes on raster data (e.g., cropping an image based on a polygon).

• Coordinate reference system and transformation support

Current version used: 24.1

4.3.3 NetCDF Java

NetCDF Java (https://www.unidata.ucar.edu/software/netcdf/) is a library created by UCAR

(https://www.ucar.edu), whose purpose is to read and write files in NetCDF format. This library

is used by the GWTF platform to read NetCDF files provided by the Modeling Platform.

Current version used: 4.6

4.3.4 Keycloak

Keycloak (https://www.keycloak.org) is an open-source identity and access management tool.

Out of the box it can store users, authenticate and authorize. It also has advanced features like

user federation, identity brokering and social login.

https://akka.io/
https://www.geotools.org/
https://www.unidata.ucar.edu/software/netcdf/
https://www.ucar.edu/
https://www.keycloak.org/

 - 45 -

Current version used: 11.0

4.3.5 ReactiveMongo

ReactiveMongo (http://reactivemongo.org) is a Scala driver for MongoDB that provides fully

non-blocking asynchronous I/O operations. This works well with the reactive programing

architecture of the system.

Current version used: 1.0.3

4.3.6 Logback

Logback (http://logback.qos.ch) is a logging library for Java and JVM applications. It supports a

wide range of logging policies, dynamically change the logging level and provides high

performance.

Current version used: 1.2.3

http://reactivemongo.org/
http://logback.qos.ch/

 - 46 -

5 Cloud infrastructure, configuration, and deployment

The GWTF platform is designed to operate in a cloud environment for easier deployment,

scalability and maintenance. The services are dockerized (i.e., built as Docker containers), so

each service is isolated from the others, and can be scaled up or down regardless of other

services.

5.1 Docker

The build scripts of the GWTF platform automatically generates docker images for each service,

currently there are two: ingest and webapi.

There are additional containers that are not automatically generated upon each build:

• Mongodb – the database (for development environments only)

• Keycloak – 3rd party identify management service

• Ngnix – a 3rd party web server that can also be used as a reverse proxy, load balancer and

HTTP cache. In production it is used as a reverse proxy server that handles incoming

HTTP requests, and redirects to the right service

Finally, there’s a docker container for serving the front end. It is also based on an Ngnix image,

and it simply serves the static resources of front-end (javascript files, HTML, CSS, images, etc.).

This container is generated automatically by the front-end deployment script.

 - 47 -

Figure 12: Docker containers

* The MongoDB database runs as a docker container only in development environments

** Containers that are re-created upon deployment of a new version

5.2 The production environment

The production environment of the GWTF platform resides in Google Cloud Platform, a suite of

cloud computing services that runs on the same infrastructure that Google uses internally for its

end-user products (such as Search, Gmail, Drive and YouTube). One of these services

(Computing Engine) provide the ability to spawn virtual machines of many types of server

operating systems. One of them is a Container Optimized OS (built by google) which is a variant

of Linux especially built for running Docker containers.

At present we only have one such virtual machine running, whose specs are detailed in 6.3.1

The data center is physically located in Eemshaven, Netherlands.

With the Google Cloud platform the specs of the machine can be easily modified via a console

user-interface and via API. It is also possible to spawn additional virtual machines as needed.

The database is hosted in MongoDB Atlas, a cloud database service. Under the hood, the

machines on which the database resides are also on Google Cloud Platform. The Atlas service

Proxy

HTTP Request

HTTP

Keycloak

MongoDB* Web API**

Front-end**

ingest**

Machine / Virtual

Machine

 - 48 -

ensures high availability, performance optimization, security and backups. The database is a

cluster (in MongoDB this is called a “Replica Set”) of 3 nodes (1 primary and 2 secondary) that

ensures high availability.

Figure 13: The production environment

The database specs are detailed in 0

Note that the front-end is not considered part of the GWTF platform. It is a web client of the

platform. It is deployed in the same production environment for simplifying maintenance and

operation, and for saving resources, but the codebase is completely decoupled.

In the future it is quite possible to deploy the front end in a separate machine, different cloud

platform and/or under a different domain name, as needed.

The proxy of the GWTF platform is configured to route requests using the following table:

Proxy

Keycloak

Web API

Front-end

ingest

Primary

Node

Secondary

Node 2

Secondary

Node 1

GWTF Virtual

Machine
MongoDB Database Replica Set

 - 49 -

Table 1: Reverse proxy redirection table

Request URL Prefix Service

api.irrigation.live Web API

app1.irrigation.live Front end

auth.irrigation.live Keycloak

5.3 Database Disk utilization

The database is a cluster of three servers, primary, and two secondary servers.

The database has 5 collections (a collection is similar in concept to a table in a relational

database):

Collection name Current size

plots 120 MB

plot_owners 0.0015 MB

plot_analytics 100 MB

plot_feedback 0.05 MB

pixel_analytics 14,800 MB

This gives an idea about the proportions of each collection, and how much growth could affect

the database size.

Below is a chart showing the growth in disk usage over time.

 - 50 -

The current growth is roughly 1 GB per month overall, assuming the current scale is maintained.

There are currently 35 variables in the regional model, therefore each variable contributes

roughly 28 MB per month.

Adding additional waterboards will increase the growth in direct proportion of the number of

pixels that it covers. V&V currently has 183x148 pixels, and Aa en Maas has 332x256 pixels.

This means roughly 250 bytes per pixel per variable per month.

5.4 Disk utilization on the server

The production server has two permanent storage disks:

Disk 0 – used for operating system, installed software, docker containers and system

configuration files (30 GB in size)

Disk 1 – used for GWTF platform log files as a temporary location for NetCDF files downloaded

from the Modelling Platform (30 GB in size)

The use of Disk 0 shouldn’t change significantly over time.

The use of Disk 1 may increase depending on several factors:

a. Number of days for which we keep the temporary data

b. Total number of plots per waterboard

c. Number of variables for each plot in the regional model

d. Total number of cells in the grids per waterboard

e. Number of variables for each grid cell

f. Total number of days in the local model

g. Total number of variables in the local model

To make a rough estimation of how much the disk space can grow, we can use the following

notations.

For each waterboard i, let the average file size of a scalar NetCDF regional model file be Si and

the average file size of a grid NetCDF regional model file be Gi. N is the total number of

waterboards.

With the local model, the NetCDF files grow each day indefinitely.

 - 51 -

Let Li be the file size of a scalar NetCDF local model file per day.

The amount of disk space would then be roughly:

𝑆𝑖𝑧𝑒 = ∑[𝑎(𝑐𝑆𝑖 + 𝑒𝐺𝑖) + 𝑓𝑔𝐿𝑖]

𝑁−1

𝑖=0

At present, the file sizes are as follows5 (in bytes):

 Regional model

Scalar (Si)

Regional model

Grid (Gi)

Local model

(Li)

Aa en Maas 95,864 14,287,048 1,889

Vallei en Veluwe 74,804 4,445,872 1,475

The regional model has 35 variables (c = 35, e = 35)

The local model has 20 variables (g = 20)

This means that the size of the temporary storage grows at about 650 MB per day with the

current parameters.

With this growth rate, the policy is to delete the files every 30 days.

5.5 Deployment process

To deploy the docker containers described in the previous section, we have a script for each

service (webapi, ingest and front-end) that does the following automatically:

1. Build the service. The result is a set of compiled classes and finally JAR files (archives

that are loaded by Java Virtual Machines)

2. Create a local copy of a docker image for this service

3. Submit the image to a private docker repository on the Google Cloud Platform

5 The size can vary a bit between different files but I’ve observed that the variation is usually not more than 1KB.

 - 52 -

4. Run a script on the virtual machine that pulls the latest docker image of that service

5. In case of the Web API and front-end services there are always running containers. The

script therefore needs to stop and remove the running container, create a new container

based on the new image and start it.

6. In case of the ingest service, the container is created and run only when triggered by the

scheduler, or upon request. Therefore, no further action is needed.

5.6 SSL and HTTPS in production

At present the GWTF platform accepts only plain HTTP. Adding a layer of encryption requires

either:

1. obtaining and installing an SSL certificate and configuring the Ngnix reverse proxy to

accept HTTPS requests

2. setting up a built-in service in Google Cloud Platform that can take over the reverse

proxy and also supports HTTPS

Option 1 needs a bit more effort but unlike option 2, there is no lock-in to Google.

Option 2 means that there’s slightly more work to do in case of a transition to a different cloud

platform. However, the added lock-in is minor.

The option that will be used is TBD.

5.7 Monitoring the system

5.7.1 Monitoring the servers

The Google Cloud Platform has an extensive console that can help monitor the servers and their

performance. It also allows to perform operations such as starting/stopping and making changes

to the configuration of the servers (e.g., increasing RAM or disk space).

In addition to the console, the Google Cloud Platform has an API that can be used to integrate

the operations and monitoring with other systems, as well as perform automation.

Moreover, there is an extensive command-line interface, that can also make automation much

easier. The deployment scripts of GWTF make use of the command-line interface in order to

https://console.cloud.google.com/

 - 53 -

push new versions to the server and restart them. The documentation of the command line

interface can be found here.

Figure 14: The Google Cloud Platform console: server monitoring dashboard

5.7.2 Log files

The GWTF platform has a logging mechanism with multiple levels of severity:

ERROR Indicates a failure or an unexpected issue

WARN Not an error but it is likely that the issue should be addressed so to avoid

future errors

INFO Informational log entries. Indicates that some expected event has occurred

DEBUG Logs that can be used to troubleshoot issues

TRACE Even lower-level entries than DEBUG, usually for debugging purposes

The logs are written to files on the server’s disk, in a rolling file policy. Meaning, there is a file

for each day, and each file is kept up to 30 days. In other words, logs are kept 30 days back.

The ingest and webapi services keep separate log file sets.

Logback, the logging library used by GWTF, lets the user determine the desired logging level.

Setting the logging level means that anything of that level and above it will be logged. For

https://cloud.google.com/sdk/gcloud
https://cloud.google.com/sdk/gcloud

 - 54 -

example, if the log level is set to WARN, then both ERROR and WARN will be logged, but

INFO, DEBUG and TRACE will not.

It is possible to change the logging level as needed.

By default, the logging is INFO.

In addition, it is possible to set the logging level at a more granular level, so it is possible to keep

the default logging as INFO but set a certain component to log at DEBUG. This way all other

components log at INFO level, and it is easier to read the logs with less noise.

 - 55 -

6 Appendixes

6.1 Catalog of the Model Variables

https://deltares.sharepoint.com/:x:/r/teams/dlt1071/_layouts/15/Doc.aspx?sourcedoc=%7B56e

8935a-0d0f-4881-b5b6-72b751e2cb49%7D

6.2 GWTF Platform API documentation

https://app.swaggerhub.com/apis/GrowWithTheFlow/GWTF

6.3 Production Specs

6.3.1 GWTF Platform Server on Google Cloud Platform

CPUs 2 vCPUs

CPU platform Intel Skylake

RAM 6 GB

Zone europe-west4-b

Location Eemshaven, Netherlands

External IP address 34.90.118.148

Disk 0 (OS)6 30 GB

Disk 1 (Data)7 30 GB

6 See section 5.3 for more information
7 See section 5.3 for more information

https://deltares.sharepoint.com/:x:/r/teams/dlt1071/_layouts/15/Doc.aspx?sourcedoc=%7B56e8935a-0d0f-4881-b5b6-72b751e2cb49%7D
https://deltares.sharepoint.com/:x:/r/teams/dlt1071/_layouts/15/Doc.aspx?sourcedoc=%7B56e8935a-0d0f-4881-b5b6-72b751e2cb49%7D
https://app.swaggerhub.com/apis/GrowWithTheFlow/GWTF/1.0.2

 - 56 -

6.3.2 MongoDB Database Specs on mongodb.com

Cloud provider Google Cloud Platform

Region Netherlands (europe-west4)

Cluster type Dedicated8

RAM 1.7 GB per node

Storage 10 GB with storage scaling9

Network 1500 max connections

MongoDB version 4.4

6.3.3 Database backup policy

Snapshots of the database are automatically being taken for backup in 4 types of periods: Hourly

(every 6 hours), Daily, Weekly (every Saturday) and Monthly (last day of month).

The retention time shows for how long each snapshot period is maintained.

8 The resources are not shared with other projects, i.e., they are exclusively used by GWTF Platform
9 If storage exceeds 90% of disk capacity, it auto expands to maintain < 70% up to 128 GB. Beyond that, the

database is upgraded to the next tier level.

 - 57 -

6.4 Settings

The GWTF platform has a few settings that can be modified. Below is a description of them with

the default values.

6.4.1 Web API service settings

Setting Description Default value

Container memory The amount of RAM allocated to the Docker

container

256 MB

HTTP host The hostname/IP the server listens on 0.0.0.0

HTTP port The TCP/IP port the server listens on 9090

DB URI The MongoDB database address

Log directory The directory on the server where the logs will be

written to

There are additional settings that are defined in Akka HTTP, including HTTP request timeout,

maximum number of HTTP connections and many others. For the complete list of Akka HTTP

settings, their description and default values see the latest documentation of Akka HTTP.

6.4.2 Ingest service settings

Setting Description Default value

Container memory The amount of RAM allocated to the Docker

container

2.5 GB

DB URI The MongoDB database address

Log directory The directory on the server where the logs will be

written to

https://doc.akka.io/docs/akka-http/current/configuration.html

 - 58 -

6.5 Future steps

The following headings are subjects that should be part of future phases of the project. Also

included are some recommendations for next steps for each subject.

6.5.1 Data Governance

Next steps: investigate which existing products can be integrated into the system to provide the

different aspects of data governance, evaluate which one is the best fit, and estimate the amount

of effort for integration.

6.5.2 Security

Next steps:

• Perform penetration tests periodically

• Evaluate risks and ensure they are mitigated

• Periodically evaluate status of security patches for each 3rd party dependency

6.5.3 Compliance and Legislation

Next steps:

• define the requirements for compliance and registration

• evaluate existing tools and examine how they can be integrated, what are the gaps.

6.5.4 Testing procedures

6.5.4.1 Functional test suites

6.5.4.2 Security test suites

6.5.4.3 Stress and performance test suites

Next steps:

• Plan the tests

• Automate where possible.

• Schedule and allocate resources for manual tests.

 - 59 -

6.5.5 Maintenance procedures

Next steps: define maintenance procedures that adhere requirements in terms of availability,

resilience, security, legislation, and regulations.

6.5.6 FAQ and Troubleshooting guide

Next steps: collect common user/dev issues from issue tracker (Jira) as well as collect feedback

from users and compile into FAQ/Troubleshooting guides.

