Henry's case: Biscayne aquifer, Florida USA

Variable-density groundwater flow modelling with SEAWAT

Location model: https://publicwiki.deltares.nl/display/FRESHSALT/Download

Gualbert Oude Essink
Deltares
Unit Soil & Division Groundwater Systems
gualbert.oudeessink@deltares.nl

Yangxiao Zhou UNESCO-IHE

Introduction

Henry's problem addresses the steady-state solution of a diffused saltwater wedge within a confined aquifer. Fresh water enters the confined aquifer at a constant rate from inland boundary and discharges into coastal boundary. Saltwater from the coastal boundary advances and mixes with the discharging fresh water.

The profile (cross-section) of Henry's case contains an aquifer with thickness=500m and length=1000m. In the table below, you see the parameters.

Parameters			
Layers	50	K _{hor}	10 m/d
Rows	1	Anisotropy K _{hor} /K _{ver}	1
Columns	100	Eff. porosity n _e	0.35
Δχ	10 m	αL	10.0 m
Δy	1 m	αΤ	1.0 m
ΔΖ	10 m	Moleculair diffusion	5 m2/d
Stress period	1	Specific storage	0.0001
Length of time	7300 days	Salinity seawater	35 kg/m³
	-	Buoyancy	0.025

Overview boundary conditions of the model

Step 1 Numerical model grid

- (1) Mesh size:
 - a. Number of layers=50; Model thickness=500m; Model top elevation=500m
 - b. Number of rows=1; Model extent=1m
 - c. Number of columns=100; model extent=1000m
 - d. Vertical exaggeration=1
- (2) Layer property
 - a. All layers=confined
- (3) Boundary (IBOUND-MODFLOW)
 - a. Cell values = 1 (active) for columns 1 to 99
 - b. Cell values =-1 (constant head) for column=100
- (4) Boundary (ICBUND-Transport models)
 - a. All cell values=1 (active)
- (5) Top elevation
 - a. Layer 1=500m;, layer 50=10m
- (6) Bottom elevation
 - a. Layer 1=490m; ...; layer 50=0m

Step 2 Parameters

- (1) Time:
 - a. Time unit=days
 - b. Simulation=transient
 - c. Stress period=1
 - d. Period length=7300 days
 - e. Transport Stepsize=10
 - f. Number of time steps=730
- (2) Initial hydraulic heads
 - a. All cells=1m
- (3) Horizontal hydraulic conductivity
 - a. All cells=10m/d
- (4) Vertical hydraulic conductivity
 - a. All cells=10m/d
- (5) Specific storage
 - a. All cells=0.0001m
- (6) Effective porosity
 - a. All cells=0.35

Step 3 MODFLOW packages

- (1) Well
 - a. Injection rate at all cells in the first column $= 1 \text{ m}_3/\text{d}$ to simulate inflow from east boundary

(2) Solver package

a. PCG2

Step 4 MT3DMS/SEAWAT packages

- (1) Simulation settings
 - a. Variable Density Flow and Transport with SEAWAT
 - b. Species: Salt TDS kg/m³
 - c. Density ON
 - d. DRHODC=0.7143
- (2) Initial concentration
 - a. All cells 1-99 = 0 k/m^3
 - b. Cells in the last column 100=35kg/m³ for seawater
- (3) Advection
 - a. Use 3rd-order TVD Scheme (ULTIMATE)
- (4) Hydrodynamic dispersion
 - a. $\alpha_T/\alpha_L=0.1$
 - b. DMCOEFF: D_m=5m²/d for all cells
 - c. $\alpha_L=10$ m for all cells
- (5) Sink/Source concentration
 - a. Constant head cells: Salt=35 kg/m³; (other cells: Salt=0)
 - b. Well: Salt=0 35 kg/m³
- (6) Concentration observations
 - a. OBS1: x=795m, y=1m, layer=35
 - b. OBS2: x=845m, y=1m, layer=40
 - c. OBS3: x=995m, y=1m, layer=44
- (7) Output control
 - a. Output times: Output frequency=20, minimum=365; maximum=7300, interval=365

Step 5 Run the model

(1) Run SEAWAT

Step 6 Presentation of model results

- (1) Contour map of salt concentrations
- (2) Break-through curves
- (3) Animate evolution of mixing

Step 7 Implement a shallow groundwater extraction well in the coastal zone, 250m from the sea.

Copy the old model to a new one in another subdir (!) and rename this model What are the effects?

Step 8 Insert a measure to reduce salt water intrusion

Copy the old model to a new one in another subdir (!) and rename this model What could be measures, what do you expect and are the effects?

Step 9 Due to climate change it is getting drier. The freshwater inflow flux is 30% less

Copy the old model to a new one in another subdir (!) and rename this model

Reduce in Models, Flow Packages, Wells the rate of all wells with 30%. What are the effects?