

Building large-scale 3D coastal groundwater models with iMOD-WQ and global datasets

Daniel Zamrsky¹, <u>Gualbert H.P. Oude Essink</u>^{2,1}, Jude King², Wahdan Achmad Syaehuddin³, Mitchel Kwint⁴, Marc F.P. Bierkens^{1,2}

Why this coastal groundwater model initiative?

- Coastal fresh groundwater is main water resource for ~50% of the world population in the coastal zone
- Groundwater is important for drinking water, agriculture, industry, as well as ecosystems & river baseflows
- Right now, fresh groundwater resources are threatened by excessive pumping, and reduced replenishments
- Projected climate change impacts, inducing sea-level rise, will worsen this situation
- We need quantified storylines on fresh groundwater availability under stress in data-poor coastal zones
- These storylines should be linked to droughts, land subsidence, flooding, (human) health and biodiversity

Applications, components and insights large-scale coastal groundwater model

Components:

Insights:

- groundwater quantity
- groundwater salinity
- subsidence (into 2024)
- heat transport (later, >2024)
- groundwater quality (later, >>2024)

into identifying potential hotspots for fresh groundwater shortages

Characteristics large-scale coastal groundwater models LCGMs(1km² scale)

- 1. Models can cover areas >> 10.000 km²
- 2. Typically **cell sizes** of **1*1km²**
- 3. Multiple model layers (to properly represent groundwater salinity and subsidence)
- 4. Our LCGM building tool use **open-source tools like Python**
- 5. Global datasets are used, providing 1st-order approximations of groundwater conditions

in data scarce regions

- 6. High-performance computing opens up new possibilities
- 7. Parallelization of SEAWAT (iMOD-WQ): important breakthrough in speeding up variable-

density groundwater flow and salt transport modeling

8. Simulation groundwater salinity dynamics over full glacial-interglacial cycle (e.g. 125 ka).

Characteristics large-scale coastal groundwater models LCGMs(1km² scale)

- 9. HydroBASINS global-watershed-boundaries dataset are used to delineate the boundaries
- 10. Offshore continental shelves are also covered (manually outlined and added to the
 - selected HydroBASINS).
- 11. Top elevation derived from a global DEM dataset (GEBCO)
- 12. Bottom elevation estimated by:
 - a. the bottom of the unconsolidated sediment formations
 - b. sedimentary rock formations (limited to siliclastic lithology)

13. When local hydrogeological input data is available (e.g. borelogs, groundwater salinity,

extractions), tools like **GEMPY** are used to **improve the LCGMs**

Planning large-scale coastal groundwater model building tool

Phase 2: Global modelling and scenarios

Example storyline: Pathways to demonstrate the future Mekong delta: linking groundwater extraction **b** subsidence **b** increased flood risk

Among others based of this research, 'Decree 167' has been implemented in Vietnam in the Law of Water **Resources**: develop and implement zoning plans to **restrict groundwater overexploitation**

Example 1: 1*1km² global grondwater model

Components:

- quantitative groundwater only
- 278 million active cells
- two model layers
- simulating period 1958–2015
- daily time steps and monthly input
- 12 nodes, 384 cores
- Snellius supercomputer
- maximum 16 hr simu time!

Verkaik, J., Sutanudjaja, E. H., Oude Essink, G. H. P., Lin, H. X., & Bierkens, M. F. P. (2024). GLOBGM v1.0: a parallel implementation of a 30 arcsec PCR-GLOBWB-MODFLOW global-scale groundwater model. *Geoscientific Model Development*, 17(275–300). https://doi.org/10.5194/gmd-17-275-2024

Example 2: parallel computing plus smart model parameters

- Split into (tens of) partitions, leading to a significant reduction in computation time
- Speed-ups of at least 10 up to 100 times, depending on cores, solver iterations and data exchange efficiencies

Three examples:

- 1. Sand Engine: from 1hr 47min 55sec -> 2min 40sec: **40***
- 2. NHI fresh-salt: from ~30 days to ~2days: 15*
- 3. Island Japan: from 5d0h36m to 5m59s: **1209***

Verkaik, J. et al., 2021. Adv. Water Resources

Example 3: Improving geology, focus sediment thickness

- we validated with ~40.000 boreholes
- decent results in deeper sediment regions
- example Australia

Building large-scale 3D coastal groundwater models with iMOD-WQ and global datasets

Example 4: Data mining hydrogeology

- Global models need data for hydrogeological properties, validation, calibration, etc.
- Without enough data, models and their projections are highly uncertain / people do not trust them.
- Recently available Python APIs for Large Language Models (LLMs), e.g., Open AI GPT3.5/GPT4 Vision).
- Architecture designed with FAIR practices in mind
- Short scripts, adaptable to different LLMs
- Exciting opportunities to apply these methods

Москва

Беларусь

Chisinä

Example 4: Data mining hydrogeology

Structured data from text

- LLM response is processed using a ulletparser and added to a structured database
- Bing maps API turns place names in ۲ coordinates
- Here: result from mining ~2000 ulletdocuments
- Five orders faster & cheaper ۲

Data Mine V1

Structured data from images

- Uses multimodal capabilities (GPT4 Vision)
- Quantitative data needs careful structuring
- It can format and also reject incomplete or poorly structured data

Example parsed JSON output from LLM for one borehole interval

Parsed output added to database

df	top	m bot	m litho ma:	in	ground level	grid referenc	e i	.d
0	0.0	3.0	TOPSOIL		27.0	NZTM	BT28 5001.png	
1	3.0	6.0	GRAVEL		27.0	NZTM	BT28_5001.png	
2	6.0	9.0	GRAVEL		27.0	NZTM	BT28_5001.png	
3	9.0	12.0	GRAVEL		27.0	NZTM	BT28_5001.png	
4	12.0	15.0	BOULDERS		27.0	NZTM	BT28_5001.png	
5	15.0	18.0	BOULDERS		27.0	NZTM	BT28_5001.png	
6	18.0	20.0	SILT		27.0	NZTM	BT28_5001.png	
7	20.0	24.0	GRAVEL		27.0	NZTM	BT28_5001.png	
8	24.0	27.0	BOULDERS		27.0	NZTM	BT28_5001.png	
9	27.0	30.0	BOULDERS		27.0	NZTM	BT28_5001.png	
10	30.0	36.0	GRAVEL		27.0	NZTM	BT28_5001.png	

Structured data from images

Tested on ~500 borehole images from New Zealand, provided by Utrecht University

Bord Grid F Locat Grour Driller Drill M Borele	Borelog for well BT28/5001 Grid Reference (NZTM): 1661007 mE, 5315067 mN Location Accuracy: 10 - 50m Ground Level Altitude: 27.0 m +MSD Accuracy: < 2.5 m Driller: Texco Drilling Ltd Drill Method: Rotary/Percussion Borelog Depth: 36.0 m Drill Date: 22-Dec-2012							
Scale(m)	Water Level	Depth(m)		Full Drillers Description	Formation Code			
		0.20m	000000 000000 000000	GRAVEL, rare boulders				
5			000000 000000 000000 000000	GRAVEL, rare boulders, moist.				
		9.00m	000000 000000 000000 000000	Blue/grey river wash GRAVEL, medium-large rare boulders				
10		12.00m	000000 000000 000000 000000	Blue/grey river wash GRAVEL, medium-large rare boulders				
		14.00m	AN.	Blue/grey large boulders Blue/grey very large boulders				
15		16.00m	<u>v</u> v	Blue/grey large boulders, some samd, water at weld on.				
20		18.00m		Sandy Silt				
-		24.00m	000000 000000 000000 000000	Blue/grey river wash gravel, wster at weld on				

groundwater models with iMOD-WQ and global datasets

Index	top_m	bot_m	litho_main	litho_description	x_coordinate	y_coordinate	ground_level	grid_reference	id
0	0		TOPSOIL	TOPSOIL GRAVEL, rare boulders	1661007	5315067	27	NZTM	BT28_5001.png
1	3		GRAVEL	GRAVEL, rare boulders, moist.	1661007	5315067	27	NZTM	BT28_5001.png
2	6		GRAVEL	Blue/grey river wash GRAVEL, medium-large rare boulders	1661007	5315067	27	NZTM	BT28_5001.png
3	9	12	GRAVEL	Blue/grey river wash GRAVEL, medium-large rare boulders	1661007	5315067	27	NZTM	BT28_5001.png
4	12	15	BOULDERS	Blue/grey large boulders	1661007	5315067	27	NZTM	BT28_5001.png
5	15	18	BOULDERS	Blue/grey large boulders, some sand, water at weld on.	1661007	5315067	27	NZTM	BT28_5001.png
6	18	20	SILT	Sandy Silt	1661007	5315067	27	NZTM	BT28_5001.png
7	20	24	GRAVEL	Blue/grey river wash gravel, water at weld on	1661007	5315067	27	NZTM	BT28_5001.png
8	24	27	BOULDERS	Blue/grey large boulders and sand, water	1661007	5315067	27	NZTM	BT28_5001.png
9	27	30	BOULDERS	Blue/grey large boulders, rare white stone meal, large river wash gravel, water 1 l/s	1661007	5315067	27	NZTM	BT28_5001.png
10	30	36	GRAVEL	Blue/grey medium to large river wash gravel, water 1-2 l/s.	1661007	5315067	27	NZTM	BT28_5001.png

Structured data from images

Handles handwritten logs (mostly), also in other languages

te drille te logge ologist: titude:_	d: <u>26-5</u> ed: <u>26151</u> EdE 70° 26	las - gs - 31/5/gr Gobs'S	Hole number: <u>Trop C = (Ju) 25039</u> . Project: <u>Cytim</u> Location: <u>Rus in ors off 20, u</u> 0 ² Longitude: <u>20 (Jul) E</u>
From	To	Rock Type	Description
0	Zm	Soil / ownburder.	
2	11 11	guy halli white	course - fine (silty) sends; por soting
		Gard	subangala- zounded fragments
		in the second	(00 sty consolidated (probably some
		11 (()	calutic ament
il	22	yellow brown Sand	to whiterh - gay in brown
1100			fine-coase siles subande an - com
			Transmit?
27	29	Silicitied Calada	in white sandy matrix; constidated
	-)		breciated fagments up to pebble size
			(& typ to ionsem); some biningtian
29	\$107	Oxidined weather	* fine schistority; grenish open fragen
,		a hlaite schist	white bonds : Calcitic (HCL: foams)
			x 20t brown band : limerite : [Fran ox.
_		NSSAW	Quarty band smaller to accur elir with
107	2425	les weathered chaite	more buich gay in colour
	1	The I was a straight of	Schutoity; Silk glas; pyster up to
135	700	french chloute some	pyrate; calute; (pans with this)
	(Eott)		Quarte etc. 23 graphile or some
			low w
	-		
-	-		
_		1	

top_m	bot_m	litho_main	litho_description
0	2	Soil/Organic	Coarse-fine (silty) sands, poor sorting
2	11	Grey silt with some sand	Subangular to rounded fragments, poorly consolidated (possibly some volcanic glass)
11	22	Yellow/brown Sand	Coarse to fine grain brown, ferroan coated,.
22	29	Silicified (Lahar	White sandy matrix (poorly sorted, bimodal).
29	102	Oxidised weathered basalt	Some scoriacity, general clay fragments, wh.
102	125	Basalt	Fresh basalt, small to medium olivine phenocrysts, black glassy groundmass
125	126	Frank chlorite schist	Epidote, calcite (HCL), quartz, schistosity, silty, (possibly up to 30 (Gt))

Using the data to construct large-scale hydrogeological models

Models can (mainly) parameterised in two ways with data-mining:

- 1. Hydrogeological properties
- 2. Initial salinity distributions

Demonstration of 3D interpolation for hydrogeological properties

Example 5: some 1*1km² large-scale grondwater models

Example 5: some 1*1km² large-scale grondwater models

Deltares

Airborne groundwater salinity mapping

FRESHEM Zeeland

Deltares

TNO innovation for life

Zwolle

Combination helicopter measurements with knowledge about subsurface and processes in fresh-saline groundwater, and geostatistical mapping via (multiple) indicator kriging.

Results:

Method:

Mapping of 3D groundwater salinity and clay layers

Applications:

- support ASR (COASTAR) in coastal zone
- identify brackish water potential
- improve groundwater models & monitoring

Citizen science, using simple devices and webportals

1000

DiST₄

Paleo-reconstructions groundwater salinity

To simulate reconstructions of past hydrological conditions in (data-poor) areas, improving understanding of present groundwater salinity.

Why now?

High-resolution global coastal groundwater salinity models are now possible:

- 1. Parallel groundwater salinity modelling (iMOD-WQ / SEAWAT).
- 2. Fast Airborne EM groundwater salinity mapping in 3D, (e.g., FRESHEM), citizen science data collection at high TRL.
- **3.** Paleo reconstructions of past hydrological conditions in data-poor areas, (possible due to parallel computer), resulting in improved understanding of present groundwater salinity.
- 4. More open hydrogeologic data available (advanced text mining, open-source webportals).
- 5. Advanced techniques for rapid 3D interpolation of coastal geology and groundwater salinity, and hydrogeological model parameters.
- 6. Fully scripted reproducible modelling workflows, clipping & refining (e.g., iMOD-Python), aiding regular updating and stakeholder trust in model results.
- **7. And: groundwater community initiatives**, like Groundwater Model Portal (GroMoPo) (e.g. poster EGU23-12340)

Paleo-reconstructions groundwater salinity

Parallel computer power is utilized to simulate 3D reconstructions of past hydrological conditions in (data-poor areas), improving understanding of present groundwater salinity.

Northwest Germany

b) Time = 40 ka Bl

d) Time = 18 ka B

f) Time = 6.5 ka BF

h) Time = 2.5 ka l

400 500

Length in the system (km

Hung et al., 2019 JoH, RS

100 200 300 400 500

Mekong delta

a) Time = 60 ka BP

c) Time = 26 ka BF

e) Time = 12 ka BP

 α) Time = 4.5 ka Bl

100 200 300

Nile delta

Data mining hydrogeology

Extracting information text.

Automated in Python using OpenAI API

New: multi-modal GPT-4 to process multiple types of input data, combining image and textl information!

Extracted data (OpenAl)

PvMuPD

User: "Extract model parameters from the text in tabular format:"

System: "Example: X,Y,Z,1,2,3"

Initial Estimate | Actual Value | Predicted Value (difference actual)
--- | --- | --Kh Aquifer (m/day) | 1 | 10 | 10.63291 (0.63291)
Kv Aquifer (m/day) | 0.3 | 3 | 3.312433 (0.312433)
Kh Aquitard (m/day) | 0.001 | 0.01 | 0.011838 (0.001838)
Kv Aquitard (m/day) | 0.0005 | 0.005 | 0.005831 (0.000831)
Porosity | 0.1 | 0.35 | 0.386181 (0.036181)

Kh Aquifer | Horizontal hydraulic conductivity of the aquifer | 10 (m/day) Kh Aquitard | Horizontal hydraulic conductivity of the aquitard | 0.01 (m/day) Kh/Kv | Anisotropy | 3.3 (aquifer) 2 (aquitard) Porosity | Porosity | 35 (%) Recharge winter | Recharge in winter, higher values denote ASR areas | 0.003 m/day (ASR areas), 0.0015 m/day (other areas) Recharge summer | Recharge in summer, negative value denotes evaporation | -0.0005 m/day Well Extraction winter | Groundwater extraction in winter | 0 m3/day per model cell Well Extraction summer | Groundwater extraction in summer | -0.625 m3/day per model

Combining techniques for 3D groundwater salinity

15 20 25 Salinit

Deltare

bot elev linear clip

- - 1500

250 - -10

-100 - 0

0 - 10

10 - 100 > 100

15 20 25

- Airborne EM surveys
- Text mining for pdfs and webportals
- Rapid, automated interpolations
- Paleo reconstructions modelling
- (Citizen science salinity monitoring)

Test 1 Making a regional 3D groundwater salinity model

50000

00000

groundwater salinity (g TDS/L)

150000

200000

250000

Oman case

Test 2 Making a regional 3D groundwater salinity model

- Tunesia-Lybia case
- 907*747*12 cells of 1*1km²
- Simulating groundwater salinity paleo-reconstruction For now 30-20kyrs BP.
- Testing parallel on 62-128 cores; using supercomputer Snellius

models with iMOD

coastal groundwate

Building large-scale 3D

Automated STEPSIZE analysis!

Advection,

Thank for you attention Questions?

Gualbert Oude Essink, Daniel Zamrsky, Marc Bierkens

gualbert.oudeessink@deltares.nl

pdf on wiki freshsalt.deltares.nl

EGU23-7607 <u>HS8.2.6</u>	A study on the suitability and quantitative potential of aquifer storage and recovery and brackish water extraction in Dutch coastal areas.	Ilja America - van den Heuvel et al
EGU23-15557 <u>HS8.2.6</u>	Monitoring & simulation groundwater salinity due to extractions in a coastal aquifer	Thijs Hendrikx et al
EGU23-17249 <u>HS8.2.6</u>	Effects surface water boundary condition scaling on modelled groundwater salinity and salt fluxes	Ignacio Farias et al
EGU23-2859 <u>HS8.2.6</u>	Assessing impact of climate change and anthropogenic factors on future salinization; a case in Northwestern Germany)	Stephan L. Seibert et al
EGU23-1844 Henry Darcy Medal Lecture	Global Water Resources and the Limits to Groundwater Use	Marc Bierkens

And PICO Zamrskly et al.: EGU23-11444 HS8.2.6

More information:

Parallel SEAWAT, imod-python and 3D viewer:

- <u>https://oss.deltares.nl/web/imod/about-imod5</u>
 - Verkaik, J. et al., 2021. Distributed memory parallel computing of three-dimensional variable-density groundwater flow and salt transport. Adv. Water Resour. 154, 103976. <u>https://doi.org/10.1016/j.advwatres.2021.103976</u>

 - https://deltares.github.io/iMOD-Documentation/viewer_index.html

iMOD Viewer

Reproducibility and transparency, Gitlab

- https://gitlab.com/deltares/imod/nhi-fresh-salt
- Delsman, J.R. et al 2023. Reproducible construction of a high-resolution national variable-density groundwater salinity model for the Netherlands. Environ. Model. Softw. 105683. <u>https://doi.org/10.1016/j.envsoft.2023.105683</u>
- 3D Paleo-reconstruction groundwater salinity and iMOD-WQ
 - Seibert, S.L. et al., 2023. Paleo-hydrogeological modeling to understand present-day groundwater salinities in a low-lying coastal groundwater system (Northwestern Germany). Water Resour. Res. <u>https://doi.org/https://doi.org/10.1029/2022WR033151</u>
 - Van Engelen, J., Verkaik, J., King, J., Nofal, E.R., Bierkens, M.F.P., Oude Essink, G.H.P., 2019. A three-dimensional palaeohydrogeological reconstruction of the groundwater salinity distribution in the Nile Delta Aquifer. Hydrol. Earth Syst. Sci. 23, 5175–5198. <u>https://doi.org/10.5194/hess-2019-151</u>

Deltares

Orange issues

- Calibration, validation, verification.
- Tekst mining: IPR of articles.
- Interferences with local hydrogeological communities, some same regional scale.

Deltares

Developments into LCGM version 1.0

Early 2023 _ _ _ _ Early 2024 _ _ _ _ _ Late 2024

