
Basis function representation of fields on meshes

July 6, 2010

1 Introduction

This document aims to describe a data model for storing discrete functions
on meshes. It deliberately focusses on what data needs to be stored and does
not attempt to describe, for example, what the netcdf fields would need to
be.

The premise of this document is that an unstructured mesh data format
has two functions: representation and facilitation of interoperability. The
essence of the representation function is that the representation of data in
the application writing the file should be translated losslessly into the data
format. That is to say, the variable placement and values of all the fields
output need not change for them to be represented in the file1.

The facilitation of interoperability function is in many respects the re-
verse of this: tools may only be able to operate on data in a particular form.
For example many visualisation tools are only capable of acting on linear or
bilinear collocated data. The data format should therefore carry with it the
information required to transform the data into a different representation
(and this transformation may be lossy).

Here we first examine how fields can be represented in terms of the basis
functions for their underlying elements. It is argued that this data model
allows the representation function to be fulfilled for a very large range of
function space choices. The examples given are all for quadrilateral elements,
in response to the query in the webex about how to represent C-grid. The
data model obviously extends to other element shapes.

The final part of the document examines how this representation facili-
tates interoperability between data in different function spaces and therefore
between tools with different function space expectations.

1Of course an application may choose to output in a lossy way for its own purposes
but this should not be forced by the file format

1



2 Example mesh

2

3

5

6

7

8

4

1

1

2

3

4

5

6

7
8

9

10

1
2

3

3 The reference quadrilateral

Every aspect of a quadrilateral element is defined with respect to a reference
quadrilateral. This is the unit quadrilateral in two local coordinates ξ1 and
ξ2

2. The reference quadrilateral has a local numbering of vertices and edges
with respect to which all actual values in the mesh are recorded. Without
making a particular statement about what the reference quadrilateral should
be, the following is the one which will be used in this document:

2

3

1
2

43
4

1

ξ1

ξ2

2some authors prefer the reference coordinates to run from -1 to 1 rather than 0 to 1

2



The vertices of the reference element can be identified with their local
coordinates:

Node (ξ1, ξ2)
1 (0, 0)
2 (1, 0)
3 (0, 1)
4 (1, 1)

4 Defining the topology

The topology of the mesh is determined by listing which vertices make up
each element this is referred to as the element node list. These are listed in
local node order. Note that the representation of the topology is not unique
because the numbering could start with any node on each element. It is
possible to derive the edges from this topology. Doing the reverse (listing
the edges and deriving the elements) is harder.

If the elements are numbered in the order given by the green numbers,
then the topology could be given by the 2D array:

Element N1 N2 N3 N4

1 1 4 2 3
2 3 4 5 7
3 8 7 6 5

5 Defining the elements

The first basis functions which we define will be those used to define bilinear
elements. This is the element used in the “A”-grid or, in finite element
terminology, the Q1 element.

The four basis functions, corresponding to the four nodes are:

3



φ1 = (1 − ξ1)(1 − ξ2)

φ2 = ξ1(1 − ξ2)

φ3 = (1 − ξ1)ξ2

φ4 = ξ1ξ2

It is trivial, but important, to observe that each of these basis functions
evaluates to 1 at the corresponding local node and 0 elsewhere.

6 Coordinates

The topology does not of itself require coordinates. It merely describes
adjacency relationships of various sorts. The coordinate field is naturally
actually defined everywhere (every point in each element has coordinates)
and the coordinate field may not be a linear function of the local coordinates
(this accounts for “bendy” elements). In the simple case of bilinear coor-
dinates on quadrilateral elements, the coordinate field is given by the Q1
element described above. This requires us to associate a set of coordinates
with each node in the mesh. For example.

Node (x1, x2)
1 (2.1, 3.0)
2 (2.3, 7.0)
3 (6.5, 7.5)
4 (6.4, 3.3)
5 (11.2, 6.0)
6 (11.0, 2.0)
7 (14.2, 8.0)
8 (14.0, 1.8)

This information is sufficient to determine the coordinates of any object
in the mesh. In particular it is sufficient to determine the coordinates of
the nodes of any element type. To see why this is true, we can look at the
example of the Q0 element in the next section.

7 C-grid scalars: the Q0 element

On the “C”-grid, scalars are piecewise constant over each element. This can
be represented by the Q0 element which has a single node located at the
barycentre of the element. Its local coordinates are therefore given by:

Node (ξ1, ξ2)
1 (0.5, 0.5)

And the corresponding basis function on each element is:

ψ1 = 1.0

4



The element node list associated with this field type is also very trivial
as there is a one-to-one mapping between nodes and elements:

Element N1

1 1
2 2
3 3

Now let’s substantiate the claim that it is not necessary to store the
coordinates of the scalar nodes. Suppose we wish to know the position of
global scalar node 1. First we look up element 1 in the Q0 element node list
and determine that this is also local node 1.

Now local node 1 has coordinates (0.5, 0.5). We now need to evaluate the
coordinate field at those local coordinates. By looking up the Q1 element
node list we determine that the nodes in element 1 are 1, 4, 2, 3. To evaluate
the coordinate at (0.5, 0.5) we therefore have:

x =
4∑

i=1

xiφi(0.5, 0.5)

= x1 × 0.25 + x4 × 0.25 + x2 × 0.25 + x3 × 0.25

= (2.1, 3.0) × 0.25 + (6.4, 3.3) × 0.25 + (2.3, 7.0) × 0.25 + (6.5, 7.5) × 0.25

= (4.325, 5.2)

As one would expect, the value of the coordinate at the element centre is
the mean of the corner values, however writing it in this way produces a
mechanism which will work to determine the coordinates of the nodes of
any discretisation type.

8 C-grid vectors

The C-grid velocity basis functions are slightly trickier as they are vector-
valued. However the same principles apply. There are four nodes on each
quadrilateral, each located in the middle of one of the edges. Using the
reference quadrilateral above, we can write the local coordinates:

Node (ξ1, ξ2)
1 (0, 0.5)
2 (1, 0.5)
3 (0.5, 0)
4 (0.5, 1)

For the basis functions, we need to know which way the global normal
vector, ~N points on each face. This is point 1.f.i. in the Unstructured
Grid Data Set Standard Requirements. In the diagram in section 2 we
have assumed that the global normal on an interior edge points towards the
element with higher number and that the global normal points outwards on
all boundaries. Other conventions are possible and do not change the data

5



model. We also need to define the local normal ~n, which points outward on
each element edge. In turn this allows us to define:

s = ~N · ~n.

On each face, s is a switch which returns ±1 according to whether the local
and global normals on that face point in the same or opposite directions.
The next issue we need to consider is that the change of coordinates from
local (ξi) to physical (~x) applies to velocity as well as to position. If we
consider the definition of velocity:

ui =
dxi
dt

then we can apply the chain rule to acquire the velocity in terms of the local
coordinates:

ui =
dxi
dξj

dξj
dt

The matrix:

J =
dxi
dξj

is known as the element Jacobian and can be calculated using the coordinate
field on the element.

This now allows us to define the basis functions:

~φ1 = sJ · [(ξ1 − 1), 0]

~φ2 = sJ · [ξ1, 0]

~φ3 = sJ · [0, (ξ2 − 1)]

~φ4 = sJ · [0, ξ2]

The basis functions evaluated on the unit square on the assumption that
the global normals align with the local normals (ie s = 1 on all edges) look
like:

6



~φ1

~φ3
~φ4

~φ2

Finally we can write the element node list for the C-grid velocity on our
example mesh:

Element N1 N2 N3 N4

1 1 3 2 4
2 7 5 3 6
3 10 8 9 6

It will be observed that this basis function representation is quite differ-
ent from the way in which a C-grid finite difference or finite volume model
is usually implemented. It should be remembered that this data model only
attempts to convey information which could be used by other tools to inter-
pret the model output. It has no impact on how the model itself might be
written.

7



9 Components of the data model

9.1 Elements

The data model illustrated above can be conceptualised as follows. The
smallest object is the element. This is the description of the nodes and basis
functions for a particular variable placement on the reference element. An
element consists of (at least):

• A list of the local coordinates of the nodes.

• A list of the basis functions.

It is likely that it will also be useful to record some more information about
the element:

• dimension.

• geometric shape, number of vertices, faces, edges etc.

• continuity between elements: continuous or discontinuous. Some el-
ements, such as C-grid, are partially continuous and this might be
useful to record as well.

There are two compatible ways that elements could be specified. First,
a list of common elements could be specified in the standard. This would
enable many applications to simply specify which element they are using
without giving the full element specification. So, for example, a model
could specify quadrilateral c-grid. Second, the application could write the
full element specification into the data file. This option allows for built-in
extensibility as the data format can be used to specify any element for which
basis functions can be written.

9.2 Function spaces

Given an element and an element node list, it is possible to map between
global degrees of freedom and local elements. This is sufficient to define
the space of functions for any field value. To accommodate meshes with
mixtures of element shapes or element degrees, it should be possible to list
a number of elements and for each element to provide an element node list
for the parts of the mesh to which it applies.

In this way, the Element specifies a local basis for functions on a single
element and the function space glues together elements to provide a global
basis for functions over the whole mesh.

There should be able to be any number of function spaces as different
fields may be stored on different spaces (for example in the C-Grid, the
velocity, scalars and coordinate fields are each in different function spaces).

8



Once again it should be noted that from the topology it is possible to
generate a list of edges, node adjacency information and element adjacency
information. In this way the topology of the mesh and the node element list
of each function space is a minimal set of information which describes all of
the data relationships on the mesh.

9.3 Fields

A field associates a list of values with the basis functions in a function space.
For example for the c-grid velocity it is the list of edge centre normal velocity
components. However in the data model it’s “just” a list of coefficients for
the basis functions of the function space. In this way the description is
totally general to all element choices.

10 Boundary conditions

The specification of boundary conditions is made easy by noticing that func-
tion spaces can be defined on the facets of the elements by using elements
with dimension 1 less than the main element. In our example above, the
domain boundary could be defined as a set of 1-dimensional elements. The
reference 1D element is a unit interval with a single local coordinate which
runs from 0 to 1. The boundaries of the Q1 element become the linear P1
element with two nodes:

Node (ξ1)
1 (0)
2 (1)

and basis functions:

φ1 = 1 − ξ1

φ2 = ξ1

A node element map describing the boundary might be:
Element N1 N2

1 1 2
2 2 3
4 1 4
5 4 6
7 3 5
8 5 7
9 7 8
10 6 8

If contiguous numbering of the boundary is desired then either the
boundary edges could be constrained to be the lowest numbered or a sepa-

9



rate boundary numbering could be adopted and mapped back to the edge
numbers.

11 Interoperability

The interoperability benefits of the basis function representation stem from
the fact that the value of each field is known everywhere. In the simplest
case, this means that the value of any field can be evaluated at any point
so model output can be compared pointwise. Another very common re-
quirement is for visualisation. Suppose we have a visualisation tool which is
capable only of representing fields in Q1 (ie bilinear nodal values) but our
model has produced Q0 output (ie cell-constant). We can produce a Q1
field for visualisation by Galerkin projection by solving the equation:∫

Ω
φiφjfjdx =

∫
Ω
φiψkgkdx

where f is the Q1 field with basis functions φ and g is the Q0 field with
basis functions ψ. Summation is carried out over repeated indices. Note
that because the field carries with it information about the basis functions,
we can construct generic tools which perform this projection between any
two spaces (indeed the ICOM group has some of these tools already although
we are hampered by not having a good file format for a wide range of these
to apply).

The pure Galerkin projection above preserves the integral of the field
over element patches (even more locally for suitable choices of basis func-
tion) and minimises the L2 error between f and g. More advanced projec-
tions are also possible to preserve properties such as boundedness and/or
divergence-freeness. Using a supermesh it is even possible to use the basis
functions to project between fields on topologically distinct meshes. This is
important if we wish to answer questions like “what is the difference between
the output of these two models” in a rigorous way. Bounded projection and
supermeshes are covered in Farrell PE, Piggott MD, Pain CC, Gorman GJ,
Wilson CR, Conservative interpolation between unstructured meshes via su-
permesh construction, Comp. Meth. Appl. Mech. Eng., 198, 2632-2642,
2009. doi:10.1016/j.cma.2009.03.004 .

10


	Introduction
	Example mesh
	The reference quadrilateral
	Defining the topology
	Defining the elements
	Coordinates
	C-grid scalars: the Q0 element
	C-grid vectors
	Components of the data model
	Elements
	Function spaces
	Fields

	Boundary conditions
	Interoperability

