
The OpenMI Document Series

The OpenMI ‘in a Nutshell’
For the OpenMI (Version 2.0)

Grant agreement number LIFE06 ENV/UK/000409

Title OpenMI Document Series: The OpenMI ‘in a Nutshell’ for the
OpenMI (Version 2.0)

Editor Roger Moore, Centre for Ecology and Hydrology, Wallingford, UK

Authors The OpenMI Association Technical Committee (OATC)

Current version V 1.0

Date 30/11/2010

Status Final © The OpenMI Association

Copyright All methodologies, ideas and proposals in this document are the
copyright of the OpenMI Association. These methodologies,
ideas and proposals may not be used to change or improve the
specification of any project to which this document relates, to
modify an existing project or to initiate a new project, without first
obtaining written approval from those of the OpenMI-LIFE
participants who own the particular methodologies, ideas and
proposals involved.

The OpenMI Association © 2010

Preface

This document, based on an earlier paper1, contains a brief overview of the OpenMI, a software
standard that facilitates the linking of software-based applications to realise integrated modelling.

The OpenMI was originally developed for integrated water resource management, but its application
has been extended to other domains of environmental management, such as agriculture and
economics.

This document is part of the OpenMI report series, which specifies the OpenMI interface standard,
provides guidelines on its use and describes software facilities for migrating, setting up and running
linked models.

Titles in the series include:

• Scope

• The OpenMI ‘in a Nutshell’ (this document)

• OpenMI Standard 2 Reference

• OpenMI Standard 2 Specification

The OpenMI is maintained by the OpenMI Association and this document, along with other more
detailed documentation, can be obtained from www.openmi.org.

The official reference to this document is:

The OpenMI Association (2010) The OpenMI ‘in a Nutshell’ for the OpenMI (Version 2.0). Part of the OpenMI Document
Series

Disclaimer

The information in this document is made available on the condition that the user accepts
responsibility for checking that it is correct and that it is fit for the purpose to which it is applied.

The OpenMI Association will not accept any responsibility for damage arising from actions based
upon the information in this document.

Acknowledgement

The OpenMI Association’s members would like to acknowledge the contribution of the European
Commission in co-funding the HarmonIT and OpenMI-LIFE projects. In particular, we would like to
thank the Commission’s staff for their sustained encouragement and support over many years.

Further information

Further information on OpenMI-LIFE can be found on the project website, www.OpenMI-Life.org.

Information on the OpenMI Association and the Open Modelling Interface (OpenMI) can be found on
www.openmi.org.

The OpenMI Document Series: The OpenMI ‘in a Nutshell’ 3

http://www.openmi.org/
http://www.openmi-life.org/
http://www.openmi.org/

The OpenMI Association © 2010

Contents

1 Introduction ...7

2 Standard...9
2.1 Definitions..10

2.1.1 Model...10
2.1.2 Value ...11
2.1.3 Spatial ...11

2.2 Composition building...12
2.3 Run-time..13

2.3.1 Pull driven..13
2.3.2 Loop driven..14

2.4 Compliance ...14

3 Tools and utilities..16

4 Chronology ..18

5 References...19

The OpenMI Document Series: The OpenMI ‘in a Nutshell’ 5

The OpenMI Association © 2010

1 Introduction

The OpenMI is primarily concerned with integrated software systems. These systems can only be
developed and maintained if they are based on a collection of dynamically interlinked applications. So
the OpenMI Association has developed a unified approach to linking applications, which it promotes
as the OpenMI Standard. The standard is intended for use with both legacy and new applications and
has been widely adopted.

Large software packages typically consist of a number of discrete phases (Figure 1a), the most
typical being:

• Generation of input file(s) (often via a User Interface)

• Computation

• Generation of output file(s) (results)

Figure 1 Terminology

The OpenMI focuses on the computation phase of the application, and the code base that performs
that computation is referred too as the engine. The OpenMI also defines a linkable component as an
engine that has been adapted to provide dynamic data exchange. Dynamic data is transferred
between components by the linking of output exchange items and input exchange items (sometimes
also referred to as targets and sources for brevity). A model is a specific instance of a component that
also includes input data (Figure 1b). For instance, a ground water model would be a ground water
component with input data for a specific geographic region of interest. This input data can often be
considered as default data, since the act of linking the model could result in the overriding of this data
with dynamic values from another source. When two or more models are linked together they are
considered to be in a composition.

This approach breaks the pattern of importing all input data before computation and not writing any
outputs until computation has been completed. To reiterate, an OpenMI model will:

• Only request inputs immediately prior to their use in the engine

• Provide outputs immediately after they have been computed in the engine

In order to achieve this, the application needs to be turned into an engine component that implements
this dynamic data transfer in a way that other engines can also recognize and utilize.

The OpenMI Document Series: The OpenMI ‘in a Nutshell’ 7

The OpenMI Association © 2010

8 The OpenMI Document Series: The OpenMI ‘in a Nutshell’

The OpenMI addresses these issues by defining a set of software interfaces (the OpenMI Standard),
which, if implemented around the engine, will allow other similarly modified engines to transfer data
dynamically between each other. If an engine implements this standard in an approved way (i.e. as
recognized by the Association) the application is deemed to be OpenMI compliant. Users of a
compliant model will know that they can perform dynamic data exchange with that engine. However,
they will not necessarily know whether the data exchange is of a type or form that would be useful to
their particular interests. Hence, an additional task of the OpenMI is to define a uniform way of
describing the available targets and sources.

The standard is intended to enable on-line (memory based) data exchange between models on a time
basis (e.g. a time stamp or a time span). Given that different models will be running on different
temporal and spatial domains, the mechanism for data conversions between domains also needs to
be prescribed. Consequently, the standard must not only specify definitions, but also provide
guidelines as to how those definitions are implemented.

The standard is not limited to connecting time-based engines. Version 2 of the standard has
specifically concentrated on simplifying the mixing of temporal and non-temporal models (e.g
databases) within a single composition.

The OpenMI Association © 2010

2 Standard

The standard is essentially defined by a set of interfaces that a component must implement. These
are described using Unified Modeling Language (UML) diagrams (Figure 2).

Figure 2 Example of OpenMI UML diagrams

Additional implementation requirements are provided as embedded comments within the interface
definitions (Figure 3). Currently the OpenMI Association provides implementations for two software
frameworks, Microsoft .NET2 and SUN Java3. To be OpenMI-compliant, the component must
implement at least one of these frameworks.

It should also be stressed that this does not preclude the use of engines written in procedural
languages such as C or FORTRAN (or indeed other languages such as C++, F#, Matlab etc.)
However, these engines must use intermediate code (wrappers) that provide the bridge between
themselves and their chosen framework. Many examples exist that do this, and the wrappers are
often made openly available for general use, frequently in the form of code libraries (often referred to
as Software Development Kits or SDKs).

To reiterate, the OpenMI Standard is defined to be framework neutral; it is only specific
implementations that might focus on particular frameworks and platforms. The Association actively
promotes the uptake and use of the OpenMI with different programming languages, frameworks and
platforms.

The OpenMI Document Series: The OpenMI ‘in a Nutshell’ 9

The OpenMI Association © 2010

10 The OpenMI Document Series: The OpenMI ‘in a Nutshell’

Figure 3 Implementation guidelines

2.1 Definitions

The standard interfaces prescribe specific requirements as to how exchange items should be defined.
This allows users, whether using the interfaces directly or browsing indirectly via a Graphical User
Interface (GUI), to get a consistent view on what is available from different components.

This is important as users need to be able to apply engineering judgement as to what is compatible:
for example, whether a source exchange item can be linked with a target exchange item, from a
different component, in a way that is meaningful from both physical and modelling viewpoints.

2.1.1 Model

To allow an OpenMI component to be usable by other components (i.e. be linkable), it is necessary
that it can be found and its OpenMI-specific information extracted. The standard requires that a
compliant component must provide metadata about itself. This consists of:

• How to locate a code library that implements the OpenMI Standard ILinkableComponent
interface.

• The type name of a class within that code library that can be used to create an instance of the
ILinkableComponent interface.

• Any additional values required for the execution of the model via that ILinkableComponent
instance.

The OpenMI Association © 2010

The metadata must be provided as XML. This XML must validate against a specific OpenMI-
prescribed XSD schema. A model is not compliant if it cannot be successfully validated against this
schema. Typically this XML is provided in a file (known as an OMI file); this however is not a
requirement for compliance.

2.1.2 Value

Value definitions are subdivided into Quantities and Qualities:

• Quantities

For values that can be expressed using SI units, e.g. flow in m3/s

• Qualities

For values that are qualitative, e.g. bird population referred to by categories ‘Safe’,
‘Endangered’ or ‘Critical’

Figure 4 GUI representation of value definitions

2.1.3 Spatial

Typically values will be associated with a spatial domain. When this is not the case the transferred
values are considered to be ID based. Spatial domains might be based on points (rain gauge
locations), polylines (river centre lines), polygons (catchment) or polyhedrons (porous rock strata).
The OpenMI defines an element set to encapsulate the spatial representation. An element set can
contain one or many elements but must not mix element types, e.g. it cannot contain both points and
polylines together.

An element set can be interrogated to obtain the defining co-ordinates, which may be plotted via a
GUI to assist the user in making linkage decisions when building a composition. Co-ordinates can be
geo-referenced against a specific GIS ‘well known type’ definition.

The OpenMI Document Series: The OpenMI ‘in a Nutshell’ 11

The OpenMI Association © 2010

12 The OpenMI Document Series: The OpenMI ‘in a Nutshell’

An element set could be a vast structure, say all the cells in a computation grid. For reasons of
efficiency, the standard therefore does not explicitly define an element. Specific element information
is extracted indirectly via the element set interface.

2.2 Composition building

When a user links two or more models together they are creating a composition. Linkages are created
by connecting output exchange items (sources) from one model to input exchange items (targets) on
another (Figure 5a).

An exchange item is defined by the pairing of a value definition with a spatial definition.

Figure 5 A composition with linkage

The onus is on the user who links models together to ensure that the linkages are physically and
numerically meaningful. Clearly in many instances the sources made visible on one component will
not be compatible with the targets on another. For example:

• A river model with a leakage source on a polyline element set representing the river centre
line

• A ground model with an inflow target on a polygon element set representing the 2D surface of
the computational grid

For this reason, the OpenMI allows for the generation of derived sources. A derived source is also an
output exchange item; it takes the existing exchange item and modifies it so that it can be connected
to a different target (Figure 5b). Derived exchange items can be provided either by the source
component or by a third-party source library. For example the OpenMI Association Technical
Committee (OATC) provides an example implementation of a third-party library of simple conversions
between different element set types.

The main advantages of derived sources are:

• Derived sources that involve considerable computational expense can be repeatably used on
multiple targets without duplication of that expense.

• Exchange only occurs between something that is a source to something that is a target.
Therefore no additional connection mechanism has to defined; i.e. there is no need for the
OpenMI to define a link interface.

The OpenMI Association © 2010

The standard also allows orphaned sources. An orphaned source has no providing model attached to
it. This is specifically useful for linking with simple data sources that involve no computation: e.g. data
files, databases, web services. In these cases, the provider of the orphaned source has a much
simpler implementation task as they do not have to implement a component.

2.3 Run-time

During run-time a composition must be driven to ensure the correctly timed exchange of data
between models. The standard advocates the ‘pull driven’ approach, described below.

2.3.1 Pull driven

The pull driven approach is based on the ‘request & reply’ mechanism according to Buschmann et al.
(1996)4. A component is defined as the primary driver of the composition; update is repeatedly called
on this primary component until it reaches completion. On each update call, before the component
performs its computation, it updates all its active targets until they can provide the required input data.
If necessary, these targets will in turn call update on their connected source components and so on.
This update and compute mechanism then propagates data around all the components in the
composition in a sequential manner.

To avoid grid-lock – a scenario where two components require inputs from each other simultaneously
– there is an additional requirement that if a component is requested for output which it cannot
provide by computation; then it must still supply a value, even if it has to guess. Typically this results
in an extrapolation from previously computed values. Apart from the primary component, other
components will only progress their computation if values have been requested. So it is quite possible
that at the end of a composition run, not all models have proceeded to the same final temporal
moment.

This approach has the advantage that, whatever the composition, it will always progress to
completion without any additional knowledge about the composition being solved. This makes it ideal
for implementation by generic GUIs. Version 1 of the standard only focused on this mode of
operation.

The primary disadvantage of this approach is that it is a purely synchronous process, i.e. single
threaded. One component will not progress until another has finished. Note that this does not
preclude a component utilising multi-threading techniques itself during its computation phases, merely
that the inter-component communication is sequential. Figure 6 shows a simple three-component
composition; model A cannot ask models B and C to progress simultaneously from time t1 to t2 even
though they have no data interdependences. Model A must ask model B to progress, wait until it
returns and then request model C to do likewise (or visa versa). Actually, for this simple example, a
clever implementation could resolve this issue generically, but in real life, compositions rapidly
become too complicated to be so optimized without additional user run-time input.

Figure 6 Sequential composition execution

The OpenMI Document Series: The OpenMI ‘in a Nutshell’ 13

The OpenMI Association © 2010

14 The OpenMI Document Series: The OpenMI ‘in a Nutshell’

2.3.2 Loop driven

The ‘Pull driven’ approach is not the only way of driving compositions. One other example would be
‘Loop driven’.

This approach assumes the presence of an external controller with additional knowledge about the
composition being solved. Therefore, currently, it is largely of benefit for programmers interacting
directly with the interfaces rather than users running indirectly using a generic UI or one of the
standard SDKs. It allows the controller to update components in any order and the controller must
protect against and resolve any grid-lock situations.

Whilst Version 2 of the standard intends to make the loop approach usable, there is insufficient
experience in its application for the Association to formally advocate it.

2.4 Compliance

As mentioned earlier, it is a condition of compliance that the implementer must provide metadata
about the model. Apart from this model-specific information, additional general information is also
required. The purpose of this additional metadata is to provide an overview of the component’s
purpose, usage and implementation. For compliance, a supplier should communicate this metadata
as XML to the OpenMI Association. The Association will then review, and if accepted, publish the
data on the Association's website to promote its availability. The metadata provides information such
as:

• What the component models and its utility

• Who owns the component and its availability for usage by others

• Which exchange items the component exposes

• Which computational frameworks and platforms it implements

The OpenMI Association © 2010

Figure 7 Compliance metadata presentation on Association website

The OpenMI Document Series: The OpenMI ‘in a Nutshell’ 15

The OpenMI Association © 2010

16 The OpenMI Document Series: The OpenMI ‘in a Nutshell’

3 Tools and utilities

As part of the development of the standard, the OpenMI Association Technical Committee (OATC)
developed a number of tools, libraries, utilities and unit tests that it used to implement and verify the
standard. There is no requirement to use these; they are not part of the standard, and indeed the
Association does not formally support them. However, they are made available as open source
utilities to assist users in developing their implementations. The two primary utilities that are available
are the SDK and Configuration Editor.

• OATC Software Development Kit (SDK)

A library of C# classes that provide implementations, examples and unit tests for the
standard.

• OATC Configuration Editor

A simple editor that allows users to add, link and run OpenMI compositions.

Theses utilities can be obtained from the OpenMI SourceForge project site, using one of these two
methods:

• http://sourceforge.net/projects/openmi (Figure 8)

• https://openmi.svn.sourceforge.net/svnroot/openmi

http://sourceforge.net/projects/openmi
https://openmi.svn.sourceforge.net/svnroot/openmi

The OpenMI Association © 2010

Figure 8 http://sourceforge.net/projects/openmi/files/

The OpenMI Document Series: The OpenMI ‘in a Nutshell’ 17

The OpenMI Association © 2010

18 The OpenMI Document Series: The OpenMI ‘in a Nutshell’

4 Chronology

• 2001–2005

The OpenMI initially developed as part of the HarmonIT5 project, an EC co-funded research
project.

Key milestones:

– Release of version 1 of the OpenMI standard

• 2005–2010

The OpenMI further developed as part of the OpenMI-Life6 project, an EC co-funded research
project.

Key milestones:

– Formation of the OpenMI Association to protect the long-term future of the Standard.

– Version 1 of the standard tested on several large-scale real-world projects.

– Version 2 of the standard developed and submitted to peer review prior to formal
ratification by the Association.

The OpenMI Association © 2010

5 References

1 Based on an original paper "The OpenMI Standard in a nutshell", Sept 2007 by Peter J.A.
Gijsbers (WL | Delft Hydraulics) and Jan B. Gregersen (DHI Water & Environment)

2 .NET Framework, msdn.microsoft.com/netframework

3 Java Software Platform, www.java.com

4 "A System of patterns", F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. (ISBN
0 471 95869 7) 1996.

5 HarmonIT research project co-funded by the European Commission (Contract no: EVK1-CT-
2001-00090)

6 OpenMI-Life project as part of the EU-LIFE Environment programme (Contract no: LIFE06
ENV/UK/000409).

The OpenMI Document Series: The OpenMI ‘in a Nutshell’ 19

	1 Introduction
	2 Standard
	2.1 Definitions
	2.1.1 Model
	2.1.2 Value
	2.1.3 Spatial

	2.2 Composition building
	2.3 Run-time
	2.3.1 Pull driven
	2.3.2 Loop driven

	2.4 Compliance

	3 Tools and utilities
	4 Chronology
	5 References

