
Abstract

Service Oriented Architectures (SOA) offer an approach for creating
hydrologic models whereby a model is decomposed into independent
computational services that are geographically distributed yet accessible
through the Internet. The advantage of this modeling approach is that
diverse groups can contribute computational routines that are usable by a
wide community, and these routines can be used across operating systems
and languages with minimal requirements on the client computer. While the
approach has clear benefits in building next generation hydrologic models, a
number of challenges must be addressed in order for the approach to reach
its full potential. One such challenge in achieving service-oriented hydrologic
modeling is establishing standards for web service interfaces and for service-
to-service data exchanges. This study presents a prototype service-oriented
modeling system that leverages existing protocols and standards to perform
service-oriented hydrologic modeling. The goal of the research is to access
the completeness of these existing protocols and standards in achieving this
goal, and to highlight shortcomings that should be addressed through future
research and development efforts.

Hydrologic Modeling in a Service-Oriented Architecture
Jonathan L. Goodall, Department of Civil and Environmental Engineering, University of South Carolina

Research Questions
1. How should models play a role in a service-oriented architecture paradigm?

2. What standards exist for exposing models as services and are these existing
standards adequate for hydrologic modeling?

3. How should a model’s system state be maintained in a service-oriented
architecture paradigm?

Background
The Consortium of Universities for the Advancement of Hydrologic Science,
Inc. (CUAHSI) Hydrologic Information System (HIS) provides access to
hydrologic observations using a service-oriented architecture paradigm.
Data services are one component of an overall service-oriented architecture
for hydrologic science. Another important part of the architecture is
analysis and modeling routines. These services can perform simple
operations ranging from simple data processing to sophisticated hydrologic
modeling.

Representing Hydrologic Data

Web Services for Data Analysis and Processing

Web Services for Modeling

Summary

References

GetCapabilities returns a description of the names and
general descriptions of each of the processes offered the
service

DescribeProcess returns the required inputs, allowable
formats, and outputs produced by the service

Execute runs the service, given the input parameters, and
returns the outputs produced by the service.

Acknowledgements
This research is supported by the National Science
Foundation as part of the project
“Geoinformationcs: CUAHSI Hydrologic Information
System”. The University of Texas, Utah State, Drexel,
CUAHSI, SDSC, and South Carolina collaborate on the
project.

Many general standards for service-oriented hydrologic data and analysis exist, however
these general services and must be supplemented with concepts specific for describing
hydrologic data and models. For this, the CUAHSI Observation Data Model schema
provides a means for describing hydrologic information, and the OpenMI provides a
means for communicating between hydrologic models. Models can be leveraged both as
service consumers or as services themselves, however tightly coupled systems present
challenges because services are typically stateless.

Open Geospatial Consortium (www.opengeospatial.org)
CUAHSI (www.cuahsi.org)
CUAHSI Hydrologic Information System (his.cuahsi.org)
Open Modeling Interface (www.openmi.org)

The Open Geospatial Consortium (OGC) Web Processing Service (WPS) standard provides an
interface for exposing processing routines as web services.

A Web Processing Service is useful for implementing functions as web services. These
functions can have parameters, inputs, and produce outputs. They are “stateless”, however,
so they are not intended for modeling applications that step through time or space.

GetCapabilities – same as for WPS
DescribeTasking – returns information describing the
tasks which the service can complete
GetFeasibility – can be used to check if parameters are
valid or if process can be completed given current
server demands
Submit – starts a task
GetStatus – checks task status (waiting, completed,

failed, etc.)
Update – change attributes of a task
Cancel – end task
DescribeResultAccess – describes how to retrieve data
resulting from the task

There are no Open Geospatial Consortium (OGC) services specifically designed for modeling.
However, the OGC Sensor Planning Service (SPS), while designed for remote control of
sensors, could be used for modeling that requires state be maintained with a server.

This is an example of a
workflow that uses
remote data to perform
simple data processing
needed to run a water
balance model. The
processing, while done
locally in this example,
could be implemented
using WPS to create a
service-oriented
hydrologic analysis
system.

Maintaining model state is important for
tightly coupled systems like
groundwater/surface water interactions.
Web services are typically stateless,
however the proposed OpenMI service
introduces the idea of sessions to make
the services stateful.

Service-oriented architectures allow for the integration of a variety of remote data and processing
resources.

Hydrologic data is often indexed by what, where, and when dimensions. The
“what” dimension can be described using hydrology specific standards (i.e.
CUAHSI ODM), while the “where” and “when” dimensions can be described
using Open Geospatial Consortium (OGC) and International Standards
Organization (IS0) standards.

GetMetadata() Called to “learn” about model

Initialize () Called to setup the model for a run by user X; returns a “token” to the user to maintain state.

SetValues(token, values) Sets values for an input exchange item for the model’s current time step

PerformTimeStep(token) Forwards the model in time

GetValues (token, exchangeItems) Returns requested values for model’s current time step

GetCurrentTime(token) Returns the current time for the model

Finalize(token) Called to clear the memory of the model run by user X.

Proposed OpenMI inspired web service interface

OGC’s Sensor Planning Service (SPS)

Furthermore, the Open Modeling Interface, while not following a strict service oriented
architecture, does provide an interface standard that could be extended for a service-oriented
paradigm.

http://images.google.com/imgres?imgurl=http://moat.nlanr.net/Workshops/HPIIS-2001/sdsc_logo.gif&imgrefurl=http://moat.nlanr.net/Workshops/HPIIS-2001/&h=73&w=158&sz=3&hl=en&start=8&um=1&tbnid=zTbA6qFh_r1TAM:&tbnh=45&tbnw=97&prev=/images?q=sdsc+logo&svnum=10&um=1&hl=en&rls=GFRC,GFRC:2006-50,GFRC:en&sa=N
http://www.opengeospatial.org/
http://www.cuahsi.org/
http://his.cuahsi.org/
http://www.openmi.org/

