Autonomic and Climatic Impacts on the Dutch Coastal Groundwater System

Esther van Baaren, Esther.vanBaaren@deltares.nl Gualbert Oude Essink, Gualbert.OudeEssink@deltares.nl Deltares, The Netherlands

Autonomous processes

- . Land subsidence
- . Anthropogenic activities:
- groundwater exploitation
- . water level management

Climate change

- . Sea level rise
- . Changing precipitation and evapotranspiration

Groundwater system

- . 40% of the Netherlands below sea level
- . Presence of saline groundwater

Change in piezometric head

A 3D model quantifies changes in groundwater flow and salt concentrations

- Impact sea level rise only at areas < 10 km from the coast
- . Decreasing piezometric heads due to land subsidence more inland

Change in saline seepage

Autonomous process: increase saline seepage in low lying polders

Autonomous process, 2100

Climate change: extra saline seepage due to sea level rise in coastal areas

Climate scenario 2100 (increase precipitation winter and summer and 2 m sea level rise)

Adaptive measurement: land reclamation offshore causes extra saline seepage

Extra salt seepage due to land reclamation offshore, 2100