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A B S T R A C T   

Freshwater aquifers in low elevation coastal zones are known to be threatened by saltwater intrusion (SWI). As these areas host a significant share of the world’s 
population, an excellent understanding of this phenomenon is required to effectively manage the availability of freshwater. SWI is a dynamic process, therefore saline 
groundwater distributions can change quickly over time – particularly in stressed areas with anthropogenic drivers. To model these changes, regional 3D variable- 
density groundwater (3D-VDG) flow and coupled salt transport models are often used to estimate the current (and future distributions) of saline groundwater. 
Unfortunately, parameterising 3D-VDG models is a challenging task with many uncertainties. Generally, uncertainty is reduced through the addition of observational 
data – such as Airborne Electromagnetic (AEM) surveys or ground-based information – that offer information about parameters such as salinity and hydraulic head. 
Recent research has shown the ability of AEM surveys to provide accurate 3D groundwater salinity models across regional scales, as well as highlighting the potential 
for good survey repeatability. To this end we investigated the novel approach of using repeat AEM surveys (flown over the same area at different points in time) and 
3D-VDG models to jointly improve the parameterisation of 3D-VDG models - while simultaneously providing a detailed 3D map of groundwater salinity distributions. 
Using detailed 3D synthetic models, the results of this study quantitatively highlight the usefulness of this approach, while offering practical information on 
implementation and further research.   

1. Introduction 

3D variable-density groundwater flow and coupled salt transport 
models – referred to in the following as 3D-VDG models – are proven and 
commonly used tools to simulate current and future distributions of 
saline groundwater (e.g. Faneca Sànchez et al., 2012; Meyer et al., 2019; 
Van Engelen et al., 2019). The usefulness of 3D-VDG models is partic
ularly clear in highly populated low elevation coastal zones, where 
saltwater intrusion (SWI) into freshwater groundwater systems poses a 
significant risk to the availability of fresh water for agricultural, indus
trial and household uses (Gomaa et al., 2021; Oude Essink et al., 2010; 
Simmons et al., 2010; Werner et al., 2013). As a result, 3D-VDG models 
are extensively used to inform groundwater policies in these areas. 

The parameterization of 3D-VDG models, i.e., finding values for 
ground water flow (e.g., hydraulic conductivity, storage coefficients) 
and salt transport (e.g., porosity, dispersivities) parameters is a daunting 
task. Particularly as these parameters can be very heterogeneous in 
space. Typically, the parameterization process starts with a hypothesis 
about parameter heterogeneity. This is followed by creating a spatial 
regionalization (e.g., zonation, geostatistical simulation) which reduces 

the number of free (unknown) parameters. Next, following an initial 
guess, the free parameters are estimated through model calibration. 
Calibration is often approached as an inverse problem, where model 
parameters are iteratively adjusted until the model response fits to ob
servations of models states or outputs. For an overview of calibration 
approaches we refer to Zhou et al. (2014) and Doherty (2010), for an 
example of an application to 3D-VDG models refer to Carrera et al. 
(2010). Typically, 3D-VDG models are calibrated using in-situ head and 
salinity observations which are often sparse. Adjusted 3D-VDG param
eters include, for example, hydraulic conductivity, porosity, dispersivity 
and recharge. However, 3D-VDG parameterization is prone to uncer
tainty. First, the large spatial heterogeneity of underground lithology 
creates errors during the spatial regionalization step. Second, calibration 
being an inverse problem usually suffers from non-uniqueness as a result 
of parameter correlation (Carrera et al., 2005), which arises from the 
sparseness of the in-situ observation used. 

Naturally, one way to reduce uncertainty is the addition of more 
observational data that relate to observing 3D-VDG states (head, 
salinity) or outputs (e.g., stream discharge and concentration). Data 
sources are often ground-based, such as wells that monitor salinity and 
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hydraulic head, or indirect geophysical methods such as Electrical Re
sistivity Tomography that measure electrical conductivity (EC) (Beau
jean et al., 2014) which is converted to groundwater salinity estimates 
using petrophysical relationships. For regional 3D-VDG modelling, often 
extending across 100′s of kms (e.g. Cobaner et al., 2012; Gossel et al., 
2010; Mabrouk et al., 2019; Michael et al., 2009; Nocchi and Salleolini, 
2013; Oude Essink et al., 2010; Van Engelen et al., 2019), 1D or 2D 
ground measurements are considered expensive – offering localized and 
disconnected information (King et al., 2020). Airborne Electromagnetics 
(AEM) offer an indirect, but fast and economical data source to over
come these shortcomings. 

The AEM method is sensitive to both lithology and groundwater, 
where primarily clay content and groundwater salinity offer electrical 
conductivity (EC) contrasts (Revil and Glover, 1998). As a result, the use 
of AEM to resolve state variables, such as groundwater salinity, and 
parameters has proliferated in recent years. AEM methods have been 
used successfully to map structure such as clay content or lithological 
units (Auken et al., 2008; Foged et al., 2014; Gunnink et al., 2012; Høyer 
et al., 2015) and such could be used to help parameterize 3D-VDG 
models with additional lithological information. In more saline envi
ronments however, mapping structure (which can relate to parameters 
such as hydraulic conductivity) is more challenging because signals are 
dominated by the strong EC contrasts found at fresh-saline interfaces 
(King et al., 2020). Naturally, this makes it highly suitable for mapping 
salinity instead, where in these environments the method has seen 
continued success for decades (Delsman et al., 2018; Faneca Sànchez 
et al., 2012; Fitterman and Deszcz-Pan, 2001; Jørgensen et al., 2012; 
Rahman et al., 2021; Vandevelde et al., 2018). 

Conceptually, calibrating a 3D-VDG model with state variables ob
tained from geophysical data can be approached using sequential or 
coupled hydrogeophysical inversion (Herckenrath et al., 2013; Hinnell 
et al., 2010). For an overview and history of hydrogeophysical methods 
see Binley et al. (2015). In sequential methods a deterministic 
geophysical inversion is traditionally run first, and then translated into 
groundwater salinity using petrophysical relationships – allowing model 
calibration (e.g. Faneca Sànchez et al., 2012). Coupled hydro
geophysical inversion involves the transformation of 3D-VDG state 
variables into a physical property which can then be forward modelled 
and compared to geophysical observations (e.g. Bauer-gottwein et al., 
2010; González-Quirós and Comte, 2021; Steklova and Haber, 2015). As 
a result, coupled models do not rely on a geophysical inversion. The 
3D-VDG model can then be run iteratively until a misfit against 
geophysical observations are appropriately small. 

In the following we present a method that exploits the ability of AEM 
to map groundwater salinity to improve the parameterization of 3D- 
VDG model properties, while at the same time providing improved 
3D-VDG predictions of groundwater salinity. We use the idea that the 
distribution of saline and fresh groundwater changes over time and the 
resulting movement of EC contrasts between fresh and saline ground
water can be resolved by AEM if measured repeatedly at the same 
location. Furthermore, previous research suggests that if repeated 
flightline paths are spatially consistent and that inverted data are 
compared, rather than the electromagnetic response itself, then the AEM 
method offers good repeatability (Huang and Cogbill, 2006). 

Thus, using a similar idea to traditional inverse calibration, where a 
model is run from the past to match observations at the present, we 
explore the possibility of using two separate AEM surveys flown at the 
same location at two different periods in time. Similar to time-lapse 
inversion that has been used extensively in reservoir engineering 
(Johnston, 2013) and hydrology (e.g. Karaoulis et al., 2011), we 
investigate the idea that the observed changes in salinity distributions 
can infer model 3D-VDG parameters. If a 3D-VDG model with initial 
groundwater salinity distributions obtained from the first survey, say at 
t0, it should be able to predict the groundwater salinity distribution at 
the time of the second AEM survey (say t1). 

Given that groundwater in the Netherlands is generally a mixture of 

seawater and freshwater, chloride is the dominant conservative anion, 
therefore for consistency we will refer to a distribution of groundwater 
salinity as the chloride distribution. To test the idea and to see if such 
inverse estimation would be feasible in theory, we created a highly 
detailed synthetic reality (3D lithology and chloride distribution over 
time between t0 and t1) based on real AEM data (Delsman et al., 2018), a 
detailed lithological model (Stafleu et al., 2011) and 3D-VDG modelling 
with the computer code SEAWAT (Langevin et al., 2007; Verkaik et al., 
2021) and a given set of “real” parameters. We then used a geophysical 
modelling approach (King et al., 2020) to simulate an AEM survey at the 
start and end of the 3D-VDG model run. We subsequently tested an 
optimization strategy that iteratively runs the 3D-VDG model with un
known parameters between t0 and t1 while comparing this “modelled” 
chloride distribution with the AEM survey at t1 and adjust the unknown 
3D-VDG model hydrogeological parameters to minimize the difference. 
Using this approach, it was tested if the original “real” parameters could 
be re-estimated correctly. 

In the following we provide a summary of our approach in Section 
3.1. Section 3.2 describes how the synthetic model was created 
including the study area it was based on, followed by the 3D-VDG model 
set up and parameterization in 3.3 and the optimization method in 3.4. 
Section 4 outlines the results of the optimization, which are followed a 
discussion and finally concluding remarks in 5 and 6 respectively. 

2. Methods 

2.1. General approach 

Our approach to estimate hydrogeological parameters is based on 
performing two sequentially processed AEM surveys, one at time t0 and 
one at time t1, that are sufficiently spaced apart to detect real changes in 
the chloride distribution of a groundwater body. This means that the 
approach is limited to groundwater systems where due to external 
forcing (extraction fresh groundwater, injecting fresh water, sea-level 
rise) the chloride distribution changes relatively rapidly. The esti
mated chloride distribution obtained from the survey at time t0 is used as 
initial condition by a 3D-VDG model that is subsequently used to 
simulate the chloride distribution at time t1. This simulation is first done 
with an initial estimate of the unknown hydrogeological parameters. We 
then perform a simulated AEM survey on the 3D-VDG model simulated 
chloride distribution to obtain an AEM chloride distribution at the same 
(lower) spatial footprint as the actual AEM survey at t1 (see Fig. 2). The 
differences between the actual and simulated AEM chloride distribu
tions are then used to drive an optimization framework, as outlined in 
Fig. 1. Here, the unknown hydrogeological parameters are adjusted. The 
3D-VDG model and AEM simulation and parameter estimation steps are 
repeated iteratively while minimizing the differences between the actual 
and simulated AEM at t1. In effect, we are applying a coupled, optimi
zation driven time-lapse hydrogeophysical inversion. The result of this 
approach are optimized estimates of the unknown hydrogeological pa
rameters and an optimized estimate of the chloride distribution at the 
resolution of the 3D-VDG model (generally higher than that of an AEM 
survey) which is also consistent with physical laws. 

At the moment, to our knowledge, regional-scale time-lapse AEM 
surveys are non-existent, but to be expected in the near future. Thus, to 
demonstrate the methodology, we used a so-called twin-experiment 
where we use a realistic synthetic reality and simulated AEM surveys. 
The complete setup of the twin experiment is shown in Fig. 1:a) the 
synthetic reality which consists of a realistic chloride distribution at t0 
and t1 simulated with the 3D-VDG model using the “real hydro
geological parameters” and two simulated AEM surveys (in blue); b) the 
model simulation (also using the 3D-VDG model) and 3D-VDG model 
based AEM survey used in the optimization (light blue); and c) the 
optimization algorithm (orange). We note that the simulated AEM sur
veys include realistic observation noise and degrading of resolution 
conform the AEM footprints (King et al., 2020). Using the same 3D-VDG 

J. King et al.                                                                                                                                                                                                                                     



Advances in Water Resources 160 (2022) 104118

3

model for reality and model simulation means that we ignore model 
structural errors. 

In the following we describe in more detail: a) the synthetic case, 
including the simulated AEM in Section 2.2; b) the model simulation and 
initial hydrogeological parameter estimates in Section 2.3; c) optimi
zation routine in Section 2.4. 

2.2. Creating a synthetic case 

The synthetic case was generated from 3D estimates from an existing 
AEM survey from the Province of Zeeland in The Netherlands (Delsman 
et al., 2018). Within this region, data was extracted from an area called 
Zeeuws-Vlaanderen (or Zeelandic Flanders in English), in southern 

Fig. 1. Method outline. Dark blue region (left): creating the synthetic reality, light blue region (right): iterating over simulated models with given parameters, yellow 
region (centre): estimating subsurface parameters. White squares: ‘real’ 3D chloride distributions in time, orange squares: geophysical simulations of ‘real’ 3D 
chloride distributions, blue squares: 3D-VDG model run with given parameters, red square: parameterization update (driven by optimization strategy). Dashed lines 
indicate a petrophysical transformation from inverted ECb to chloride. 

Fig. 2. Location of the case study used to create the synthetic case. The flight lines shown are the same as in the original AEM survey.  
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Zeeland. This east-west orientated strip (~60 × 15 km) is bordered to 
the North by the Scheldt River estuary and to the south by the Belgian 
border. At the centre of Zeeuws-Vlaanderen, around the town of Ter
neuzen, a subset area was selected covering ~7 × 7 km for further 
processing. The model area and AEM flightlines are highlighted in Fig. 2. 

The groundwater system characteristics of the area are summarized 
by the presence of shallow freshwater lenses typically about 10 – 20 m 
thick (Delsman et al., 2018), caused by Holocene sea-level trans
gressions and subsequent land reclamation (Berendsen, 2005; Delsman 
et al., 2014). The hydrogeological system is hosted within lithologies 
comprising Neogene and Quaternary sediments (Stafleu et al., 2011), 
including younger fine sands, clays and peats, with deeper northward 
dipping sand and silts (Vos, 2015). Within the study area, the dipping 
hydrogeological base extends to ~50 – 70 m below the surface and 
denotes an impermeable aquitard. To create a synthetic reality, we use 
the existing detailed 3D chloride distribution that was obtained from the 
AEM survey performed over the Province of Zeeland (Delsman et al., 
2018). This chloride distribution was taken as the “real chloride 

distribution” at t0. For this area, a very detailed 3D-lithological char
acterization is available (Stafleu et al., 2011), based on ~1500 borelogs 
in the study area (see Fig. 3). In our synthetic example, we assume the 
lithology to be fully known and focus on estimating the chloride dis
tribution and hydrogeological parameters only. 

2.2.1. Translation of chloride to electrical conductivity 
The chloride distribution and lithological information were further 

processed into bulk electrical conductivity (ECb) to allow for the 
simulation of an AEM survey and subsequent inversion. First, a known 
empirical relationship from the study area was used to transform the 
data into the electrical conductivity of the groundwater (ECw) and 
corrected from a reference groundwater temperature of 25 ◦C to 11 ◦C, 
as outlined in P.G.B. De Louw et al. (2011). As the ECb is a product of 
both lithology and pore water salinity, a petrophysical transformation is 
required to split the information between the two. The simplest 
approach is using apparent formation factors (FF) which are the ratio of 
saturated sediment (ECb) to that of the pore water itself (ECw) (Archie, 

Fig. 3. 3D-VDG model set up highlighting areas of extraction, represented as summer recharge (A) with enhanced recharge in the extraction areas (B), both as m/ 
day. The lithological model (C) that was used to assign hydraulic conductivities, shown with 25 x vertical exaggeration. 

J. King et al.                                                                                                                                                                                                                                     



Advances in Water Resources 160 (2022) 104118

5

1942). The electrical properties of clays minerals such as surface con
ductivity complicate this relationship (Revil et al., 2017). As a result, a 
more accurate transformation in areas with clay present requires the 
addition of surface conductivity, such as Waxman and Smits (2003). In 
this study we decided to use the simpler, apparent FFs (ECb/ECw) – 
values are shown in Table 1. The values for apparent FFs were taken 
from over 500 samples in an area only 20 km away from the area that 
was used to create our synthetic model, and therefore offered good 
representative values. 

The 3D distribution of lithological units to derive the FF distribution 
is the one taken from GeoTOP (Stafleu et al., 2011) (Fig. 3) and corre
sponding FF values from nearby field-measurements, as shown in table 
1. (P.G.B. De Louw et al., 2011). 

2.2.2. Obtaining the chloride distribution at t1 using a 3D-VDG model 
To set up a 3D-VDG model that produces a realistic change in chlo

ride distributions at t1, we constructed a model that comprises a com
bination of typical anthropogenic and natural drivers that result in 
chloride movements – while at the same time ensuring that the model 
changes enough to produce sufficient signal. Natural drivers are natural 
recharge and autonomous freshening and salinization that occurs as a 
result of past inundation or sea level change (Vos, 2015). We also 
introduced anthropogenic drivers: extensive groundwater extraction 
that results in the so-called upconing (or shallowing) of brackish to sa
line groundwater and areas with enhanced recharge of fresh surface 
water through Aquifer Storage and Recovery (ASR) (Dillon, 2005), 
which would likely result in a rapid increase of fresh groundwater vol
umes (Pauw et al., 2015; Zuurbier et al., 2015). 

With this in mind, a 3D-VDG model was discretized into 25 × 25 m 
horizontal cells across a ~8 × 8 km area and comprised a 0.5 m vertical 
resolution at shallow depths, increasing in thickness logarithmically 
with depth to a maximum thickness of 10 m, resulting ~3.5 million 
active cells over 54 layers. A hydrogeological base was assigned at be
tween 50 and 70 m depth and was derived from the GeoTOP model and 
REGIS (Vernes et al., 2010). The hydrogeological parameters of the 
model were similarly taken from the 3D lithology distribution of Geo
TOP, assigning the parameter values from Table 2. Here, lithology 
classes coarse, medium, fine loamy and silty sand were assumed as 
aquifer material and the finer and organic classes as aquitard material. 
Well locations were selected based on three conditions, in all model cells 
that are: (1) at 8 m depth (below surface), (2) within aquifer lithologies, 
and (3) within freshwater areas (<0.5 g/l chloride). 

To understand how an AEM survey might respond to groundwater 
chloride movements across a broad range of time-scales, the model was 
run for 60 years, longer than was thought necessary for this study. 
Finally, at every consecutive 6 month time-step, we modelled the 
geophysical response of the AEM system. In this study, we conclude that 
after 15 years there was likely sufficient signal available for the AEM 
system based on a known noise threshold of 5%, (see the Results 
section). 

2.2.3. Simulating an AEM survey 
As highlighted in Fig. 1, to recover a 3D chloride distribution that has 

the same resolution and physical characteristics of an actual survey at t0 
and t1, an AEM survey needed to be simulated. The process is similar to 
(King et al., 2020) and is summarized in the following. Existing mea
surement locations and flightlines (typically with a spacing between 30 
and 60 m) were taken from the survey that produced the “real” 3D 
chloride distribution (Section 2.2.1). ECb values, which are obtained 
using the method explained in Section 2.2.1, were then sampled at these 
points every ~50 m to facilitate fast inversion times while still hon
ouring the 50 m horizontal resolution of the 3D model. Vertical sampling 
was done at 0.5 m intervals. The horizontal resolution, or footprint of 
the system, is approximated as a 100 – 200 m diameter circles directly 
beneath the towed instrument (Reid et al., 2006; Yin et al., 2014). 
Therefore, at each measurement location, the nearest two model cells 
were averaged to imitate a 100 m footprint. Data were forward modelled 
using AarhusINV (Auken et al., 2005). Coil source and receiver spacing, 
and orientations were selected based on the values used by Fugro’s 
RESOLVE HEM system during the original survey (Delsman et al., 2018). 
Finally, to approximate the noise levels present during FEM acquisition 
(Farquharson et al., 2003; Green and Lane, 2013), 5% white noise was 
added to the forward modelled data. 

To recover a distribution of electrical properties from an AEM sur
vey, a geophysical inversion is typically undertaken. For this study, a 
deterministic geophysical inversion (e.g., Auken et al., 2015; Farqu
harson et al., 2003; Viezzoli et al., 2009; Vignoli et al., 2015) (referred to 
in the following as an inversion) using AarhusINV (Auken et al., 2015) 
was implemented. This inversion approach uses a pseudo-2D laterally 
constrained approach where neighbouring observations are constrained 
in the regularization process, helping to produce laterally coherent re
sults. The method has been successfully used in many hydrogeophysical 
studies (e.g. Auken et al., 2008; Chongo et al., 2015; Delsman et al., 
2018; Kirkegaard et al., 2011) and is particularly useful in areas with 
laterally continuous EC contrasts such as our study area. 

The inversion starting model consisted of 20 fixed layers, with the 
first set to 0.5 m thick, increasing logarithmically till 50 m. Below this, 
the final layer is assumed to extend infinitely. Given the highly saline 
environment, the model was assigned a starting ECb value of 1 S/m. The 
lateral and vertical constraint parameters were set to 1.3 and 3 respec
tively, following recommended and commonly used values (Auken 
et al., 2005). This minimum-structure style inversion changes ECb only 
and has been found to accurately reproduce smoothly varying chloride 
distributions (King et al., 2018). The depth of investigation (DOI) varies 
according to the EC of the subsurface; in this case by shallow saline 
areas, and therefore could range from ~5 to 60 m in saline or fresh 
groundwater areas, respectively. The inversion output has an estimation 
of DOI for each 1D model location. The method to calculate this pro
cedure is described in Vest Christiansen and Auken (2012). All in
versions converged to a misfit of less than 5%, thereby effectively 
explaining the forward modelled observations. 

Table 1 
Formation factors used per sediment class for the conversion of ECb data to 
chloride.  

Lithology Formation factor (FF) Std Samples 
Peat 2.1 0.7 41 
Clay 2.5 0.6 192 
Sandy clay 2.8 0.8 52 
Fine sand 3.2 0.4 299 
Medium sand* 4   
Coarse sand* 5   

*FF taken from another study (Goes et al., 2009), without uncertainty and 
sample numbers. 

Table 2 
The parameters chosen for the 3D-VDG model.  

Parameter Description Value (unit) 
Kh Aquifer Horizontal hydraulic 

conductivity of the aquifer (m/ 
day) 

10 (m/day) 

Kh Aquitard Horizontal hydraulic 
conductivity of the aquitard (m/ 
day) 

0.01 (m/day) 

Kh/Kv Anisotropy 3.3 (aquifer) 2 (aquitard) 
Porosity Porosity 35 (%) 
Recharge winter Recharge in winter, higher values 

denote ASR areas 
0.003 m/day (ASR areas), 
0.0015 m/day (other areas) 

Recharge 
summer 

Recharge in summer, negative 
value denotes evaporation 

− 0.0005 m/day 

Well Extraction 
winter 

Groundwater extraction in winter 0 m3/day per model cell 

Well Extraction 
summer 

Groundwater extraction in 
summer 

− 0.625 m3/day per model 
cell  
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Finally, as a 3D initial groundwater chloride distribution is required 
for the 3D-VDG model and the inversion method only produces 1D 
vertical profiles along flightlines, a 3D interpolation step was required. 
This was approached using a simple method that exploits the layered 
nature of the inverted data to efficiently produce 3D ECb models from 
the inversion results. Each one of the 20 inversion layers for all flight
lines were interpolated separately using 2D kriging with automatic 
variogram modelling. The resulting 2D layers were then compiled to 
produce a 3D model. The method is described in (King et al., 2018) and 
has been shown to accurately produce 3D volumes of ECb in similar 
settings. As a final step, the DOI estimates were interpolated using the 
same 2D Kriging technique, where ECb values below the DOI were filled 
to the model base using the last encountered ECb value at that depth. 
Finally, the resulting ECb volume was transformed back into chloride 
using the reverse of the approach described in Section 2.2a, resulting in 
simulated AEM surveyed chloride distributions at t0 and t1. 

2.3. 3D-VDG model simulation and initial parameter estimates 

The 3D-VDG model simulation was run iteratively for a 15-year 
period using the exact same discretization and general parameteriza
tion as the model described in Section 2.2.2, except for the unknown 
parameters. Following extensive experimentation, we conclude that the 
method was to be used to predict the hydraulic conductivities of the 
aquifer and aquitard, and porosity. The reasoning behind this choice was 
two-fold: (1) it was found that the 3D-VDG model was most sensitive to 
these parameters, and (2) we had to restrict the number of parameters to 
avoid excessive computation times and identification issues. The ratio of 
horizontal to vertical conductivity Kh/Kv was kept constant, and thus in 
effect the optimization was used to resolve three parameters. As this 
study is unique and therefore a proof of concept, it was felt that while 
more parameters could be possible, it was important to keep the 
approach simple. Given that especially higher Kh and Kv values result in 
longer SEAWAT runtimes, initial estimates were chosen to be too low on 
purpose to facilitate faster iteration times early on. To test the sensitivity 
of the optimization to incorrect initial estimates, the starting values were 
chosen to be ten-times greater than the actual values. Effective porosity 
was simply assigned by a random guess to test the general robustness of 
the method. Values used are highlighted in Table 3. 

2.4. The optimization 

We used a suitable non-gradient global optimizer that works well in 
the high-dimensional problems typically found in the field of ground
water modelling. For this, the Nelder-Mead downhill-simplex method 
was selected for its robustness and proven ability to optimize model 
parameters and find global minima (Nelder and Mead, 1965). Its ability 
to handle noise is also desirable given the inherent noisiness related to 
the acquisition of AEM data. The optimization was implemented using 
the SciPy Optimize package available in Python, that uses an improve
ment to the original method by adjusting the simplex parameters rela
tive to the dimensionality of the problem (Gao and Han, 2012). 

The objective function returns the root mean squared error (RMSE) 
between t1 survey and t1 predicted, given by: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
ypred,i − yref ,i

)2

N

√

(1)  

where pred at t1 denote simulated AEM surveyed chloride values based 
on the 3D-VDG model predictions (with unknown parameters) and ref at 
t1 the simulated AEM surveyed chloride values based on the synthetic 
reality (3D-VDG model with known parameters). This was minimized 
until a convergence criterion was met, in this case given by the RMSE 
between iterations. This value was set to 0.1 g/l chloride and was chosen 
to be unrealistically low which effectively allowed the optimization to 
run indefinitely to allow a user-based decision on whether it has 
converged sufficiently. In practice, the convergence criteria could 
however be set to reflect the levels of noise from the AEM system if 
known. 

3. Results 

3.1. AEM sensitivity to estimated chloride distributions 

The 3D-VDG model was first run for 60 years to understand the 
length of time needed for chloride changes to be detected by the AEM 
system at each time-step, and indeed the sensitivity of the AEM method 
to the transient effects in general. To understand this quantitatively, 
each time step of the resulting 3D-VDG model was geophysically for
ward modelled using the method outlined in Section 2, where successive 
time-steps were compared quantitatively to the first model as relative 
mean absolute error (%). The 5% red horizontal line in Fig. 4 represents 
an approximation of AEM noise levels thereby providing a rough indi
cation of required groundwater chloride movements before there is 
enough signal for a second survey to measure meaningful differences. 

From Fig. 4, it follows that prior to ~5 years a repeat survey would 
likely fall within the estimated noise range, indicating that a repeat 
survey in this instance would fail to effectively map differences. After 15 
years (or 30 time-steps) the slope gradient decreases after an initial 
sharp increase to ~7.5% difference. Therefore, in the following the time- 
period between zero and 15 years was used to simulate the two surveys 
and ultimately guide the optimization. In a real setting, localized ground 
measurements over time and geophysical forward modelling could be 
used to estimate if there is likely to be enough signal for a repeat AEM to 
be useful. 

3.2. Estimated parameters 

The optimization ran for 250 iterations for 15 (3D-VDG simulated) 
years per iteration, taking on average five hours per iteration and ~2 
months to complete on a standard desktop PC with four processing 
cores. The 3D-VDG model simulation was by far the most computa
tionally intensive step, with the geophysical forward modelling, inver
sion, 3D interpolation and petrophysical transforms step only taking 
around half an hour in total per iteration. 

The optimization results at each iteration are highlighted in Fig. 5., 
as the Kh/Kv ratio was kept constant only the Kh values are shown for the 
aquifers and aquitards. 

Here it is apparent that there were two local minima: (1) between 
iterations 20 – 50 and (2) between 100 – 170, both of which were suc
cessfully avoided by the algorithm. Predictably changes in RMSE 
correlated well to changes in model parameters and showed that the 
steps between each iteration were appropriately sized and generally 
sensitive to the objective function. This is despite the fact that smaller 
changes in chloride distributions were not resolved as a result of the 
AEM simulation, the effect of which is highlighted in Fig. 6. 

Quantitative results based on the final iteration (Table 4), suggest 
that each of the parameters were either successfully predicted or were 
improved considerably over the course of the optimization. 

Table 3 
Initial parameter estimates used in the first iteration.  

Parameter Initial Estimate (m/day) Actual Value (m/day) 
Kh Aquifer 1 10 
Kv Aquifer 0.3 3 
Kh Aquitard 0.001 0.01 
Kv Aquitard 0.0005 0.005 
Effective porosity 0.1 0.35  
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3.3. Estimated chloride distributions 

Qualitative results of chloride distributions at t1 are presented in 
Fig. 6, showing the synthetic reality on row 1.a. and 1.b. for the AEM 
salinity and 3D-VDG models respectively, followed by the results of the 
optimization, with the results of the first iteration on row 2, the last 
iteration on row 3 and the difference between the last iteration and the 
synthetic reality in row 4. 

Comparing the chloride distributions between the AEM and the 3D- 
VDG models in general (columns ‘a’ and ‘b’ respectively), it is clear that 
the AEM simulation successfully mapped the locations of larger features 
such as upconing of saline groundwater and freshwater lenses. Smaller 
features (~< 200 m across) were not successfully resolved given the 

Figure 4. Figure 4. Sensitivity of the AEM system over time, represented per flightline (light grey lines) and averaged across all flightlines (red line). Sensitivities are 
represented as the mean absolute difference of all five frequencies of the acquisition system over time, including both in-phase and quadrature components from the 
AEM acquisition system for each flightline. 
Figure 5. RMSE (in g Cl− /l) for each predicted model parameter over each iteration. Top left: predicted Kh clay (or aquitard) in m3/day. Top right: predicted Kh cand 
(or aquifer) in m/day. Bottom left: predicted porosity (%). Red line indicates the real, target value. 

Table 4 
The optimization results showing the values of initial, actual and predicted 
model parameters.  

Parameter Initial 
Estimate 

Actual 
Value 

Predicted Value (difference 
actual) 

Kh Aquifer (m/ 
day) 

1 10 10.63291 (0.63291) 

Kv Aquifer (m/ 
day) 

0.3 3 3.312433 (0.312433) 

Kh Aquitard (m/ 
day) 

0.001 0.01 0.011838 (0.001838) 

Kv Aquitard (m/ 
day) 

0.0005 0.005 0.005831 (0.000831) 

Porosity 0.1 0.35 0.386181 (0.036181)  
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footprint of the AEM system and the loss of resolution during the 3D 
interpolation of ECb values. In these areas the features have been 
smoothed out – effectively creating a vertically thicker brackish zone 
instead. It was also observed that the optimization successfully managed 
to recreate the synthetic realities’ chloride distribution by the final 
iteration. The difference between the AEM synthetic reality (Fig. 6. 1.a.) 
and the AEM final iteration (Fig. 6. 3.a.) is larger than the differences 
between that of the 3D-VDG models. This is likely due to the 5% noise 
added in the geophysical modelling step and appears to cause uncer
tainty regarding the location of the fresh-saline interface. Despite this 
error, the 3D-VDG model was able to dynamically downscale the 
smoothed features observed in the AEM surveys. 

Fig. 7 shows a 3D image of the final estimated AEM chloride distri
bution and the differences between the initial and final iteration thereof. 
The observed differences in salinity clearly show the zones where the 
chloride distribution was updated by the calibration process. 

4. Discussion 

Given the exploratory nature of this study, several necessary sim
plifications were made. As a result of these simplifications, in the 
following we will first discuss sources of uncertainty and their potential 
effects on our results, followed by a discussion of the optimization 
method. Finally, we mention thoughts on practicalities followed by 
potential for further research. 

In this twin-experiment, we assumed that the synthetic model 
correctly describes reality – this assumption applies to the physics of the 
simulated AEM survey itself, as well as the magnitude of groundwater 
transport over time based on the 3D-VDG model. In the case of the AEM 
survey, we assumed that the chloride distributions were mapped with 
similar physical limitations to an actual survey. A major cause of this 
uncertainty is that we used a 1D geophysical forward and inverse 
modelling tool for a 3D problem (Auken et al., 2005), effectively 
removing 3D effects on the signal. Although there are 3D AEM 
geophysical modelling tools available (e.g., Cox et al., 2012), it was 

Figure 5. AEM (left column) and 3D-VDG (right column) model results at t1 and initial salinity at t0. Rows 1 and 2 illustrate the ‘real’ model salinities at t0 and t1 
respectively, therefore show our synthetic realities. Row 3 is the optimization result at the first iteration and the 4th row is the final optimization result at the final 
iteration. The last (5th) row is the difference between the final iteration and the synthetic reality. The section location is shown in figure 7 with the red line. 
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found that using these tools would lead to considerably longer iteration 
times on an already computationally expensive task. Instead, we added 
5% gaussian noise which is considered an upper estimate of noise 
(Siemon, 2012) as well as simulating a 100 m footprint at measurement 
location (Reid et al., 2006; Yin et al., 2014). These steps effectively 
tested the robustness of repeat AEM surveys while maintaining reason
able optimization run-times. 

For the 3D-VDG model simulation, we sought a careful balance be
tween a realistic model while ensuring that there was sufficient signal 
for the optimization to work with. Based on a combination of using real 
subsurface data and known parameters, which were taken from an 
applied study (Mulder et al., 2020) as well as the groundwater modelling 
experience of the authors – we feel that the model describes reality to an 
acceptable level for meaningful conclusions. 

An additional source of uncertainty is that we assume knowledge of 
parameter values and locations of the other hydrogeological parameters, 
such as the interaction between groundwater and drainage via the so- 
called drain resistance and the locations of aquitards and aquifers. We 
suggest that a simple way to examine the effect of keeping unknown 
parameter values constant would be to add noise to those that are not 
part of the optimization – where permitted deviations could be based on 

known uncertainty levels. The same could be said for the spatial dis
tribution of clay and sand units, allowing the locations thereof to change 
based on given noise thresholds. The results of implementing this could 
then be used to determine quantitively the effect of these assumptions. 
Ideally, all uncertainties should have been included in the optimization 
as a fully heterogeneous 3D model. In this study, however, we chose to 
keep our method simple owing in part to the already high computational 
burden (discussed below) as well the fact that this is presented as a 
proof-of-concept – thus further complexity is considered subject for 
further study. 

Besides correctly describing reality – uncertainty exists in both the 
type of geophysical inversion used, as well as the petrophysical trans
formation (i.e. to transform from ECb to salinity and vice-versa). Recent 
research highlights this, where it was found that the petrophysical 
transformation introduced the most uncertainty – and that overall 
incorrect handling of these two features can result in the mapping of an 
overly thick brackish zone (González-Quirós and Comte, 2020). The 
deterministic method used here suffers from non-uniqueness – where an 
infinite number of models can explain the data. In these cases regula
rization constrains the inversion, typically resulting in smooth models 
(Arsenin, 1979; Constable, 1987). One way to explore this effect is 

Figure 6. 3D view of estimated simulated chloride distributions. Top: Final estimated AEM chloride distribution. Bottom: Differences between the first and final 
iteration AEM chloride distributions, highlighted zones that were updated by the optimization process. 
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stochastic inversion, where a prior model is used instead of regulariza
tion (e.g. Minsley, 2011; Minsley et al., 2020). In this study we used a 
single inversion method as a necessity, given the computational burden 
of stochastic inversion. Furthermore, in this synthetic study we assume 
that the lithology is known – and that we estimate the properties of only 
the high and low permeability sediments. In real applications the effi
cacy of the AEM system for mapping similar shallow fresh-saline 
groundwater distributions, using the same geophysical inversion 
method, was quantitatively validated recently in Delsman et al. (2018). 
As a result, we feel that on balance our approach was valid for this study. 

With the petrophysical model, we settled on the simpler apparent FF 
without using surface conductivities for a number of reasons. First, these 
values were derived from an actual, local field-study, and thus offered a 
good, realistic approximation for the study area. Second, lithologies 
such as peat and clay that could introduce error were only present as 1.4 
and 6.2% of the total model volume respectively. As a result, we felt that 
additional uncertainty introduced when finding appropriate values for 
surface conductivity negated the use of local, representative data. It is 
however recommended that this step is taken with care in other use 
cases, given the propensity for incorrectly used petrophysical models to 
introduce non-physical error into hydrogeophysical models 
(González-Quirós and Comte, 2020). The ECb gradient is strongly 
controlled by fresh-saline groundwater contrasts – an effect also 
observed clearly in local ECb ground measurements. As such, despite 
potential error introduced in the petrophysical transformation and 
inversion, the relative magnitude of signal changes over time were 
considered sufficient to drive the optimization and were a good enough 
approximation for our purposes. 

Overall, as the time-lapse approach presented here is new, we 
recommend that future research focusses on a global uncertainty anal
ysis. Having a better quantitative grasp on what this means for practical 
mapping outcomes would be a useful step and potentially highlight 
methods to reduce uncertainty, for example the use of in-situ salinity 
data. For the purposes of this study however, we feel that the potential 
use of repeated airborne surveys was effectively proven given the highly 
realistic nature of our 3-D synthetic model. 

The downhill-simplex optimization method used here (Gao and Han, 
2012; Nelder and Mead, 1965) was selected for its simplicity and ability 
to handle highly-dimensional problems. Despite the successes of using 
the method in this study, in a practical (rather than exploratory) setting 
– we suggest that other methods are considered. This is recommended 
for two reasons: (1) the optimization was impractically slow to find a 
solution, and (2) the addition of other parameters would increase the 
likelihood of the downhill-simplex arriving at a local-minimum, espe
cially given its sensitivity to the choice of initial guesses (Wang and 
Shoup, 2011). As the 3D-VDG model computation step cost ~5 h per 
iteration, one could simply run this step externally on large computa
tional clusters using iMOD-SEAWAT, which utilizes distributed memory 
parallelization for faster computation times (Verkaik et al., 2021). In a 
practical setting however, we suggest fully parallelizing the optimiza
tion itself, using methods such as evolutionary algorithms (Brauer et al., 
2002; Mühlenbein et al., 1991) and parallel Bayesian optimization (e.g. 
González et al., 2015; Kandasamy et al., 2017) where function evalua
tions can be done in parallel rather than sequentially. The latter 
approach has been successfully used in hydrocarbon reservoir modelling 
(e.g. Abdollahzadeh et al., 2011), where similar to the optimization used 
in this study, inverse problems are solved that require multiple 
flow-simulations, which are more computationally expensive compared 
to our problem. We consider the implementation of this an important 
avenue for future research given the possibility to parameterize fully 
heterogeneous models. 

Finally, while the results of this research highlight the usefulness of 
two AEM surveys in time, we find it necessary to discuss these results 
against 3D hydrogeological inverse models that utilize different data 
configurations – for example a single AEM survey, or even multiple 
sources of in-situ head and salinity data. 

Unlike this study, in these cases there isn’t a complete picture of a 
groundwater state at two time intervals in 3D. As a result, an inverse 
modelling routine relies on a conceptualized version of the past based on 
prior knowledge, followed by a history matching routine until the 
chloride distribution is matched with acceptable accuracy to available 
data. This has the disadvantage that, owing to the large inertia of fresh- 
salt groundwater systems, simulations have to start far back in the past, 
sometimes hundreds to thousands of years back (Meyer et al., 2019; 
Delsman et al., 2014). Apart from being highly computationally 
expensive (in practice requiring) massively parallel computing, it also 
requires knowledge of boundary conditions from the distance past, 
adding considerable uncertainty and requiring extensive research. 
Nevertheless, we believe that a quantitative comparison between history 
matching to a single AEM survey and optimizing between two in a 
similar experiment would be useful as future research. 

5. Conclusions 

Using a twin-experiment involving two highly detailed synthetic 
realities and simulated airborne electromagnetic (AEM) surveys, it was 
successfully demonstrated that it is possible to jointly estimate 
groundwater salinity and hydrogeological parameters. In a real appli
cation, this could be achieved using a combination of two AEM surveys 
(flown across the same area over two periods in time) and a variable 
density groundwater flow and salt transport (3D-VDG) model. By 
coupling AEM and 3D-VDG models using geophysical forward modelling 
methods, it was shown that two AEM surveys are sensitive to changing 
groundwater chloride distributions over time - despite a significant loss 
of resolution as a result of the survey process itself. In doing so, it was 
also demonstrated that the time needed for chloride movements to be 
sensitive to AEM can be attained quantitatively. Given the knowledge of 
sensitivities, it followed that an optimization method could be used to 
recover hydrogeological properties using 3D-VDG. With this in mind, a 
simple optimization process was implemented to resolve hydro
geological parameters of interest, while at the same time producing a 
physically consistent estimate of the chloride distribution at higher 
spatial resolution then the AEM surveys. 
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Bernhard, Kirsch, Reinhard, Elbracht, J., González, E., Siemon, B., Kirsch, R., n.d. 
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