
Calibration of a flow (SOBEK) model using scripting 
 

We have a hydrodynamic flow model, which has been built with Sobek 2.12, of the fluvial system 

around Zwolle. The model has been completely set up, except for the Boundary condition at one of the 

tributaries, at Boxbergen, and the roughness of both main tributaries. We also have a time series of 

water level measurements at the entrance of the channels which flow across the center of Zwolle. 

Using this information, build a script to automatically calibrate the model. 

 

 

The workflow of this tutorial has been divided into the following steps: 

1) Import required libraries. 

2) Import current model and measured data. 

3) Compare current results with measurements. 

4) Take objects that will be used for model calibration. 

5) Loop running model for different parameters combinations. 

6) Add to the previous plot the results of these runs. 

7) Calculate goodness of different cases and select the best fit. 

8) Export results. 

 



 

 

1 Import required libraries 
 

Start Delta Shell (DS) by double clicking on the corresponding icon on the desktop. First, the current 

scripting folder needs to be changed to a separate one from the default value. Right click on the 

toolbox icon of the corresponding panel, and using the context menu change the scripting directory to 

D:\scripting. The panel will be refreshed showing the folders and scripts contained in the new location. 

Scripts inside DS use IronPython programming language. This is a variety of the Pyhton programming 

language strongly integrated with the .NET Framework. All the scripts can have access to all classes 

and their respective members inside the framework of the .NET environment, as well as those of Delta 

Shell. Initially, however, they are not loaded into the interpreter. They need to be explicitly imported.  

Open the script named SobekScriptStart (the extension, *.py,  is hidden by the interface of DS). Some 

imports have already been included in this file. Others will be added during the present tutorial as they 

are required. In some cases, all members (attributes) are imported from a model (by using an asterisk), 

in some other cases, only some of them.  

# python libs 

 

# .Net libs 

from System import DateTime, Double 

from System.Collections.Generic import List 

 

# DeltaShell libs 

from ??? import Map 

from ??? import ActivityRunner 

from ??? import CsvFunctionExporter 

The members Map (to assign a coordinate system to a model, and load a Bing map as background), 

ActivityRunner (to run a model) and CsvFunctionExporter (which imports and exports, among others, 

time series from a csv file) need to be imported for later use. Find in which namespaces those 

members can be found by looking for those terms in the scripting help (F1). Then replace the triple 

questions marks with those namespaces. 

For the time being, nothing else will be modified at this part of the code. If you want, you can collapse 

the region to help you continue the scripting procedure more easily. 

 

2 Import current model and measured data 
Both the non-calibrated model and the measurement data are located in one same folder. We will 

assign that folder name to a variable: 

rootPath = "D:\\scripting\\" 



The water level has been measured at the entrance of the channels in the center of Zwolle (node name 

is 3). The data can be found in the file D:\scripting\waterLevel_at_3_Measured.csv 

In the first place, load this data. A very complete importer for comma separated value (csv) files 

containing time series has been implemented inside DS. However, not all this functionality is required 

now. The script SobekWorkshopHelperFunctions contains an adaptation of that generic importer to the 

specific situation dealt with. Open the above mentioned script, and take a look at the code. We will 

have to use this, and all the other helper functions contained in this file, in the script we are 

developing. Therefore, you need to add a line to import all attributes from this script file.  Set the focus 

again in the editor view for the script being developed, SobekScript. Then, right click on the icon for the 

script file SobekWorkshopHelperFunctions, and select the option Add as import. The following line will 

be added at the top of the script.  

from SobekWorkshopHelperFunctions import * 

Place this line of code inside the region import libraries, under the comment line for python libraries. If 

desired, you can collapse again the region to keep the code tidy. 

Add the following lines to import the csv time series for the file: 

# Import of csv (station data) 

csvPath = rootPath + "waterLevel_at_3_Measured.csv" 

measuredTimeSeries = ImportCsvTimeSeries(csvPath,"Time","Value","dd-MMM-yy HH:mm:ss") 

Run all the code written in the script so far, starting with the imports region. This will enable new 

capabilities of the scripting editor view, like the autocomplete functionality. 

Let’s give a new name to the previously imported time series. Start typing the name of the variable: 

meas 

Then, press CTRL + Space bar. A context menu will be shown containing all the possibilities which 

contain the same letter combination. In this case, there is only one. So simple press ENTER and the 

variable name will be automatically completed.  

If you now type a dot, a context menu will be automatically presented, showing all the members of 

that object. All these members have been defined in the source code of Delta Shell. Each member is 

presented after an icon which indicates its kind (property, event or method). Additionally, the type of 

the currently selected one is also indicated in a tooltip. In the case of methods, also the arguments and 

their respective types are indicated. 



 

In order to identify the different time series when they are plotted, a different informative legend will 

be assigned to each of them. This will easily help identify every line in the final chart. Select the 

property Components. Its first element (number zero) contains the property Name. Assign a new string 

to the name, for example “Measured time series”. 

measuredTimeSeries.Components[0].Name = "Measured time series" 

The available SOBEK 2.1x model can be found in the path D:\scripting\SW_max.lit\2\. Assign this value 

to a new variable modelPath. Use for this the previously created variable rootPath, and add the 

missing folders. Remember to escape the backslash character, as shown above in the assignment of 

rootPath.  

The SOBEK 2.1x model will be imported using the ImportSobek2Model function defined in the 

SobekWorkshopHelperFunctions library. From that entire model, only the flow sub model will be 

imported. The other parts (water quality, rainfall-runoff, and real time control) will be omitted. Use the 

information contained in that python script to complete the import command: 

model = ImportSobek2Model(modelPath + "NETWORK.TP", , , ,) 

The model has now been loaded into memory, but it is not shown yet in the DS GUI. This is, strictly 

speaking, not necessary to continue working with it. However, it can be handy to have it accessible not 

only from the scripting environment but also directly in the GUI. Use the Add method of the 

RootFolder object to attach the object model to the project object in the project explorer panel. Once 

you have run it, the model will be added to the project and shown in the GUI. 

property 

event 

method 



 

Assign the flow model to a new variable waterFlowModel, by using the function GetItemByName 

contained in the SobekWorkshopHelperFunctions library. The list where that object can be found 

contains all the sub-models of the model variable (model.Models). The name of the flow model is, as 

shown in the previous figure, “water flow 1d”. 

Next, add a coordinate system to the water flow model previously assigned: 

cs = Map.CoordinateSystemFactory.CreateFromEPSG(28992) #RD new 

waterFlowModel.Network.CoordinateSystem = cs 

Actually, the previous code can be combined into one single line. Finally, open the view with a Bing 

map as background, by using the function defined in the help library: 

OpenModelMapViewWithBackground(model) 

 

3 Compare current results with measurements 
Run the flow model to obtain the results with the current configuration: 

ActivityRunner.RunActivity(waterFlowModel) 

The previously loaded time-series was measured at point where the Almelose Kanaal forks into three 

different branches in the center of Zwolle. Zoom in the map to that point and select the node. In the 

properties panel, you will see its name, “3”, as indicated previously. Assign that calculation point 

object named “3” to a new variable calculationPoint. You can do this with the GetItemByName 

function previously used. Now, the list inside which to search is the set containing the values at all 

locations:  

waterFlowModel.NetworkDiscretization.Locations.Values 

Next, obtain the time series at that location, and set it to the variable timeSeriesBase: 

timeSeriesBase = waterFlowModel.OutputWaterLevel.GetTimeSeries(calculationPoint) 

Change the name of this time series to “Base time series” as done before with the imported one. 

Now, create an empty list that will contain all the time series result of this exercise, so that they can be 

easily compared the imported time series. 

# Create time series list containing all timeseries to compare 

timeSeriesToCompare = List[TimeSeries]() 



The first two time series that will be added are the imported one, and the one obtained from the 

model with the initial configuration as just imported. 

Use the Add method of the list of time series just created with each of the above mentioned series to 

include them. 

At this time, you can plot both time series to see how the results do not agree with the measurements 

obtained at the calculation point used for model calibration. 

Gui.DocumentViewsResolver.OpenViewForData(timeSeriesToCompare) 

  

4 Take objects that will be used for model calibration 
The model calibration will be done by changing the less reliable parameters from the loaded model. 

Let’s assume that these factors are the flow boundary condition at the node Boxbergen, and the 

roughness of the main tributaries leading to Zwolle: 

 



The definitions of boundary conditions object are not known yet in the scripting environment. The 

object WaterFlowModel1DBoundaryNodeDataType needs to be imported from the corresponding DS 

namespace. Use the online help to find which namespace it is, and add the corresponding line in the 

import libraries region.  

The complete name of the flow boundary condition at Boxbergen is, as shown in the previous figure, 

composed by the name of the location and the current value. We will use the first part, the location 

name, to grab that object. Assign the beginning of the name of the BC to a new variable: 

bc1NameBegin ="Boxbergen" 

A for loop that goes along all the BC’s in the flow model (object waterFlowModel.BoundaryConditions) 

can be used to pick up the one whose name starts with the previous string, and assign it to the variable 

bc1: 

for bc in waterFlowModel.BoundaryConditions: 

    if bc.Name.startswith(bc1NameBegin): 

        bc1 = bc 

You can save the initial boundary condition for later reference. Assign it to the variable bc1Ini. If you 

next type in: 

bc1Ini = bc1. 

a context menu will be automatically displayed next to the dot, showing all the members available for 

this boundary condition object. If you can’t see the context menu, you can obtain it by pressing CTRL + 

Space bar. Then, select the Flow property, which corresponds to the current value of that boundary. 

You can open the corresponding editor view by double clicking on the corresponding item of the 

project explorer panel. This will show the BC automatically changing while the script modifies its value 

in the next step. 

The other object that will be used for tuning the model up is the roughness at the main tributaries. 

First of all, this object should be available in the scripting environment. Look for the object 

RoughnessType in the online help, and add the corresponding import to the first region of the script.  

The roughness at the main tributaries is the first object (so the index is [0]) in the list of roughness 

items, as shown in the picture above. The object to grab is the corresponding network coverage.  

rghnsMain = waterFlowModel.RoughnessSections[0].RoughnessNetworkCoverage 

You can save the current value for future reference, as done before with the BC. 

rghnsIni = (rghnsMain.GetValues())[0] 

Similarly, if you double click on the item in the project explorer panel, you will open the corresponding 

editor view and will be able to see how it automatically changes while the calibration loop is being run. 

5 Loop running model for different parameters combinations 
The possible values that the calibration parameters may have, can be indicated in different ways, for 

example, through their respective statistical distributions.  However, for the sake of simplicity, in this 



tutorial, let’s assume that only a limited amount of values is possible for each of them, and that the 

possible combinations of those cases are equally likely.  

For the water flow boundary condition, we will assume that the possible values are 8, 10 and 12 m3/s. 

For the roughness along the main tributaries, we will accept as possible values, using the roughness 

type Strickler  coefficient ks, 24, 26, 28, 30, 32 and 34 m1/3s-1, so a relatively rough river bed surface.  

Provide these values in both respective vectors: 

rangeBC1 = [     ,    ,     ] 

rangeRoughness = [      ,      ,     ,    ,     ,     ] 

Now build the loop that will iterate along all possible combinations of the paramaters: 

for bc1Value in rangeBC1: 

    # change under this comment the property Flow of bc1 to the BC iterator bc1Value 

    for rgnhVal in rangeRoughness: 

        for k in rghnsMain.Locations.Values: 

            rghnsMain[k] = [rgnhVal, RoughnessType.StricklerKs] 

The second line needs to be modified to assign the BC a different value in the range each time that the 

loop executes that code. The loop of the last two lines above changes the roughness for each location 

inside the Main roughness item to the roughness iterator value rghnVal, while keeping the type as 

StricklerKs. 

The code above, once the second line has been modified, only changes the parameter values but the 

model is not run. Add a line inside the second level of the loop, once the roughness has been changed, 

to run the flow model. 

At this point, the model would be run for each case combination of both parameter ranges. However, 

the results after each run need to be saved, and added to the list timeSeriesToCompare created before. 

In order to do this, first assign the time series at the calculation point “3” to a new variable timeSeries. 

Then modify the name of this time series to a string indicating the exact case that series represents: 

timeSeries.Components[0].Name = "bc1= " + str(bc1Value) + " rghness=" + str(rgnhVal) 

Finally, add that time series to the collection timeSeriesToCompare, as done earlier in this tutorial. A 

list with all results at the observation point will then be contained in this collection. Just to check that 

everything went fine, you can print the amount of time series present in it: 

print timeSeriesToCompare.Count 

There should be 1 (measurements) + 1 (initial time series) + 3 x 6 (calibration cases) = 20 elements in 

total contained in the list. 

6 Plot the results of the calibration runs together with the previous ones 
The results obtained for the different model cases at the observation point can now be plotted 

together with the previously obtained for base model, and the imported data. To begin with, close the 

view plotting the former content of the object timeSeriesToCompare: 

Gui.DocumentViewsResolver.CloseAllViewsFor(timeSeriesToCompare) 



Next, open the view again. The graph will be generated with the current content of 

timeSeriesToCompare. In Delta Shell, there is a default maximum number of time series (10) which can 

be plotted simultaneously in a chart. You can easily override this limitation by first assigning the view 

object to a variable, then modifying the MaxSeries property to the number of time series to plot. 

Finally, refresh the view to take into account his modification: 

Gui.DocumentViewsResolver.OpenViewForData(timeSeriesToCompare) 

view = Gui.DocumentViews[Gui.DocumentViews.Count -1] 

view.MaxSeries = timeSeriesToCompare.Count 

view.RefreshChartView() 

At the original scale, it may look like all lines fit very well, but this is due to the initial condition being 

very different from the later evolution of the water level. If you zoom in around the end of the 

simulation, the vertical scale will be modified and you will see the differences more clearly. This will be 

taken into account subsequently, when calculating the goodness of each simulation. 

7 Calculate the goodness of the different cases and select the best fit  
As just shown, a visual inspection can be misleading, and, anyway, is not an accurate method of 

comparison. A numerical algorithm is required. A function to subtract two lists has been implemented 

in the helper library. Take a look at it to learn how to use it. The parameter startIndex, which, if not 

explicitly indicated, is, by default, assumed to be zero. 

Additionally, a function is required to estimate the magnitude of the total deviation. For example, you 

can add up all the differences in the vector, regardless their sign. Even in this case, there are several 

possibilities, for example to sum the squared elements of the difference lists, or to sum their absolute 

values, among others. Choose the option you prefer, and implement it as a new function which takes 

one list (of deviations) and returns one number indicating the magnitude of the vector. You can 

implement this auxiliary function in the helper library file or directly in the script you are developing. 

The first option is preferred. 

One possibility would be: 

def sumAbsValues(list): 

    sum = 0 

    for val in list: 

        sum += abs(val) 

    return sum 

The goodness of a simulation will be based on the deviation from the measured time series. Get those 

values, and assign them to a variable, since they will be used repeatedly: 

tsRef = measuredTimeSeries.GetValues() 

Now, create a list in which the deviations of the results for each simulation with respect to the 

measurements will be saved. When a model is run, the initial conditions are predominant at the 

beginning of the simulation. Also, very frequently, numerical oscillations occur due to the 

inconsistency of the proposed initial conditions. To get rid of all this spurious data, select a number of 

time steps to be discarded at the beginning of each time series during the goodness calculation (warm-

up period), and write a loop which iterates along all the results: 



deviation =[] 

startIndex = 20 #remove influence of initial conditions 

for i in range(1,timeSeriesToCompare.Count): 

    devItem = 

sumAbsValues(list(substractLists(timeSeriesToCompare[i].GetValues(),tsRef,startIndex)

)) 

    deviation.append(devItem) 

Notice that the first time series of timeSeriesToCompare, with index 0, has been omitted. Why is that? 

The best fit will be given by the smallest deviation from the measurements.  

bestFitDeviation = min(deviation) 

bestFitIndex = deviation.index(bestFitDeviation)+1 

Once the best fit has been found, the values for the calibration parameters corresponding to that case 

can be extracted: 

if bestFitIndex == 1: #basis model 

    bc1BestFit = bc1Ini 

    roughnessBestFit = rghnsIni 

else: 

    idxBestBC = (bestFitIndex-1)/len(rangeRoughness) 

    idxBestRoughness = (bestFitIndex-1)%len(rangeRoughness) 

    bc1BestFit = rangeBC1[idxBestBC] 

    roughnessBestFit = rangeRoughness[idxBestRoughness] 

You can optionally print the results of the calibration: 

print "selected bc: " + str(bc1BestFit) + "m3/s" 

print "selected roughness " + str(roughnessBestFit) + "m^(1/3) s^-1" 

print timeSeriesToCompare[bestFitIndex].Components[0].Name 

8 Export results 
Finally, all the time series obtained during the model calibration can be exported to external csv files 

for further analysis, if desired: 

exporter = CsvFunctionExporter() 

index = 0 

for ts in timeSeriesToCompare: 

    exporter.Export(ts, rootPath + "waterflow_at_3_" + str(index) + ".csv") 

    index += 1 

It is also possible to add a flag to the name of the files to indicate which one corresponds to the best fit: 

exporter = CsvFunctionExporter() 

index = 0 

for ts in timeSeriesToCompare: 

    if index == bestFitIndex: 

        flagBF = " best fit " 

    else: 

        flagBF = " " 

    fileName = rootPath + "waterflow_at_3_" + str(index) + flagBF + ".csv" 

    print fileName 

    exporter.Export(ts, fileName) 

    index += 1 


