You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 10 Next »

Understanding Flow Slides in Flood Defences

During  flow  slides  thousands  of  cubic  meters  of  sediments  move  within  seconds  to  hours downwards along a submerged slope. Being able  to estimate the risk that flow slides pose to flood defences is vital for the safety of low-lying, densely populated coastal regions.

This requires understanding  the involved complex  processes within  the eroding  slope and the turbulent water flow above its dissolving surface. A numerical method, the material point method (MPM)  which  is  able  to  model  these  processes  in  a  uniform  framework  is  enhanced  in  this interdisciplinary  project  for  the  analyses  of  flow  slides.  This  requires  new  solutions  for  the modelling of turbulent water flow, of soil erosion, transport and deposition and of heterogeneities of the subsoil. Models will be derived from laboratory and field experiments and translated into robust,  efficient  numerical  models.  The  obtained  MPM-based  solution,  thoroughly  validated through  experiments,  will  be  provided  to  experts  in  industry,  consultancy,  academia  and government agencies.

Research Summary

During a flow slide, large amounts of soil move down an underwater slope. A flow slide is able to remove an entire dike or dune section which poses a severe threat to the water safety of low-lying countries.

The ability to predict flow slides is an important asset for the design of flood defence measures, their  construction,  maintenance  and  safety  assessment;  even  more  so  in  view of  intensifying land use and the impact of climate change on low-lying coastal areas worldwide.

Flow slides are not yet well understood. Their study requires an integrated approach of fluid and soil mechanics; soil  movement induces turbulent  water motion  which in  turn interacts with the eroding soil surface. Currently, such an integrated approach is lacking. Studies so far mostly rely on  empirical  approaches  that  apply  to  specific  circumstances  only  and  use  considerable simplifications. Physical experiments  involve  high  costs as scale effects necessitate large test facilities and such tests often only allow predictions for specific projects. This makes the safety assessment of flood defences and the development of measures to prevent flow slides difficult and costly.

In  the  proposed interdisciplinary project, an integrated numerical solution for the simulation  of underwater flow slides from initiation up to deposition of sediments will be developed through enhancement  of  a  numerical  method,  the  so-called  material  point  method  (MPM).  Laboratory experiments will be performed to gain deeper insight into soil  and fluid mechanical  processes that  occur at  the  onset  of  and  during  flow slides.  They further  serve  for  the  validation  of  the developed numerical solution method. New physics-based models for soil-water interaction, soil heterogeneity and turbulent flow as relevant to flow slides will be formulated and existing models will be extended. They will be translated into purpose-built, efficient algorithms to be integrated into available Anura3D MPM software.

Utilisation

Measures  taken  in  the  Netherlands  in  recent  years  to  counteract  flow  slides  involved  costs amounting to M€ 100.

Results of  this project will allow an accurate and site-specific evaluation of the vulnerability of flood defences to flow slides. This enables integrated probabilistic safety assessments of flood defences - and also an estimation of the post-failure ability of a flood defence to prevent flooding. Results   of   this  project  will   thereby  allow  for  much   more   refined  and   thus  economical maintenance works.

The  devised  enhanced  Anura3D MPM  software  is  a  3D  generic  numerical  method  for  integrated  geotechnical and hydraulic analyses that can also be applied to other erosion processes than flow slides. It will for example also be of benefit to the Dutch offshore industry. Numerical analyses will  help  to  raise  the  level  of  confidence  in  innovative  technologies,  e.g.  for  scour  protection, protection of offshore pipelines, dredging and the exploration of hydrocarbon reservoirs. Furthermore,  advanced  mathematical  solutions  developed  in  the  frame  of  this  project  are expected  to  find  their  way  into  other  commercial  software,  e.g.  the  Plaxis  FEM  software  for geotechnical applications.

With regard to academia, this project prepares the ground for future high-level national and international  collaborations  between  applicants  and  academia  as  well  as  the  high-tech  industry.

Numerical solution

Much   progress   has   been   made   throughout   the   last   decades   in   numerical   analyses   of geotechnical  problems  including  problems  that  involve  groundwater  flow,  for  example  by  the Plaxis 3D FEM software. Simulations of fluid flow in hydraulic engineering applications based on solution of the Navier-Stokes equations reached a high level of sophistication, for example with the Delft3D computational fluid dynamics (CFD) software. However, no integrated solution exists to date for the combined modelling of deformation of water-saturated soil and flow of free surface water, the transition between the two. Soil-water interaction, i.e. erosion and sedimentation, is currently  modelled  with  available  software  on  the  basis  of  empirical  relations  rather  than  a consistent continuum mechanical description.

A  solution  which  is  based  on  interfacing  geotechnical  engineering  and  CFD  software  is  not straight forward. Geomechanical problems require a Lagrangian description and the widely used finite  element  method  (FEM)  is  commonly  used  for  their  solution.  CFD  software  follows  an Eulerian  approach  and  commonly  uses  a  Finite  Difference  scheme.  Combining  such  differing approaches renders numerical inaccuracies. In  the  proposed  project,  a  novel  integrated  numerical  solution  for  the  analyses  of  underwater flow slides from initiation up to deposition of  sediments will be developed on the basis of present numerical state-of-research approaches.

Throughout  the  last  years  considerable  progress  has  been  made  in  numerical  analyses  of geotechnical  problems  involving  large  deformations  of  water-saturated  soil  by  means  of  the Material Point Method (MPM). MPM is closely related to FEM. It combines the Lagrangian approach of FEM with the Eulerian approach of particle methods such as SPH   (smoothed   particle   hydrodynamics).   Equilibrium   equations   are   solved   on   a background finite element mesh as with FEM. A cloud of material points that moves through the  mesh  is  used  to  model  arbitrary  large   deformations  of  soil,  or  flow  of  water.  Mass conservation is implicitly obeyed. A separation of material, gapping or erosion-like processes is implicitly  included   in   this  mixed  Lagrangian-Eulerian   approach.  It  furthermore  features  a straightforward soil-structure and water-structure contact  formulation. Several highly non-linear density dependent strain softening models are  available. They are  well suited to  model sand. MPM  has  been  extended  for  coupled  2-phase  analyses.  Recently,  it  was  found  that  this numerical method is well suited to simulate problems of erosion and  sediment transport. Soil with water flowing through its pores, fluidized soil and the transitions between the two states are modelled  in an integral  numerical framework. Such an  MPM suited for first simulations of flow  slides  of  homogeneous  sediments  is   currently  developed  at  Deltares   together  with the Anura3D MPM Research Community (www.Anura3D.com).

The Anura3D MPM software will be used in this project for the numerical analyses of flow slides and other problems of erosion. This however requires significant enhancement of the MPM code through integration of existing physics based models and new models developed in the course of the project.

MPM simulation of slope deformation (Wieckoswki 2013) showing soil “particles” in the presence of fluid.

Tasks

1) Validation Anura3D MPM

Extensive validation of  the Anura3D MPM software  will  be  performed in  the  course of  this project.  The planned simulations of laboratory and field tests as well as case studies provided by industry will be highly complex, requiring good understanding of  the numerical method and the considered problem. As a starting point, simplified benchmark problems based on analytical solutions will be used for validation. Here, the available Anura3D MPM code can be used. As the enhancement of MPM  proceeds,  the  complexity  of  analyses  will  be  gradually  increased  from  laminar  to turbulent  flow,  from  homogeneous  to  heterogeneous  soil,  from  the  available  simplified  state transition criteria to more sophisticated solutions.

2) Improvement numerical solutions

Anticipated  long  timeframes  and  large  dimensions  of  flow  slide  analyses  as  well  as  the complexity  of  the  considered  equilibrium  and  transport  equations  requires  highly  advanced, purpose-built  numerical  solutions  in  order  to  obtain  usable,  i.e.  stable,  software  allowing  for analyses  whose  computational  effort  is  affordable  and  computation  time  remains  within  a reasonable timeframe.

The numerical integration of the dynamic equilibrium and transport equations over time involves advancement of the solution in steps. Depending on the differential equation and time integration scheme, different constraints are placed on the time increments to ensure stable solution. For propagation  of waves in soil  described  by hyperbolic differential equations a different criterion applies  than  for  dissipation  of  pore  water  out  of  soil,  described  by  a  parabolic  equation.  For implicit and explicit schemes different parameters of a problem are known to limit the step size, e.g.  stiffness  of  soil.  The  impact  of  other  parameters  such  as  soil  permeability  is  not  well understood yet.

In principle two methods are used for the analysis of the stability of time stepping methods: 1) methods based on the amplification factor of the integration method combined with an estimate of the eigenvalue of the corresponding (linearized) space discretisation method or 2) a Fourier analysis. Gained insights can be used to invent more stable integration methods.

Another  problem  lies  in  the  transition  between  soil  filled  with  pore  water  whose  mechanical behaviour  is  described  by  equilibrium  equations  of  the  soil-water  mixture  and  fluidized  soil described by the Navier-Stokes equations along a moving interface. This is presently modelled in a simplified, discretised way. State transition is detected on the basis of a threshold porosity of the soil. Here, an accurate, robust solution has to be developed that takes into account a gradual transition between the two states.

3) Integration of results into MPM

Integration of results into the Anura3D MPM involves extension of the MPM code or development of  libraries  which  are  linked  to  the  MPM  code.  Special  attention  will  be  paid  to  efficient parallelisation of the code to be able to make optimal use of available state-of-the-art computer facilities.  Sets  of  benchmark  tests  will  be  assembled  for  respective  code  extensions  to  prove their proper working. Extensions  will  be thoroughly documented and coding  guidelines  will  be applied to ensure a high degree of quality of the implemented solution.




  • No labels